AUTHOR TITLE	Cackler, William A Farm Management Problem. Teacher Guide. AGDEX 810.
INSTITUTION	Ohio State Univ., Columbus. Agricultural Curriculum Maierials Service.
SPONS AGENCY	Ohio State Dept. of Educa ion, Columbus. Agricultural Education Service.
PUB DATE	86
NOTE	73p.; Ecr a related student workbook, see CE 048 905.
AVAILABLE FROM	Chio Agricultural Education Curriculum Materials Service, 2120 Fyffe Road, Room 254, Columbus, OH. 43210-1099.
PUB TYPE	Guides - Classroom Use - Guides (For Teachers) (052)

EDRS PRICE DESCRIPTORS

IDENTIFIERS
MF01/PCO3 Plus Iostage.
Agribusiness; *Agricultural Education; *Agricultural Production; Agricultural Supplies; Behavioral Objectives; *Budgeting; Cost Estimates; Equipment Utilization; Facility Planning; Farm Accounts; *Farm Management; Learning Activities; Lesson Plans; Life Cycle Costing; Secondary Education; *Simulation; *Vocational Education Ohio

ABS'RACT

This guide is intended to assist teachers in conducting a farm management simulation that has been designed to help vocational agriculture students acquire competency in both crop and livestock farming. The introductory section includes an overview of the simulation, plenning considerations and suggested grading criteria, and a suggested sequence for developing the farm management problem (including a discussion of student choices, recommendations concerning the use of reference materiass, and prssible changes that individual instructors can make in the simulation). The first unit consists of crop production data on the following: liminy, corn, soybeans, small grains, forages, harvest management, seeding mixtures and rates, pasture, and suggested rates and dates of seeding important Ohio crops. The following livestock production data are included in unit II: nutrient composition of feed stuffs commonly fed to cattle and sheep; metabolizable energy, vitamin, and mineral contents of swine feeds; average nutrient composition of feeds commonly used in horse rations; guidelines in selecting rations for dairy cattle, beef cattle, sheep, swine, horses, and poultry; space requiremerts for livestock, poultry, and horses; and breeding recommendations. Unit III consists of equipment and supplies cost data, including building and equipment costs for livestock, equipment costs and custom hire rates, acre-hours for tillage implements and other equipment, costs of farm supplies, and marketing data. Fourteen tıansparency masters are included in the fourth unit. (MN)

A FARM MANAGEMENT

PROBLEM

Teacher Guide

OHIO AGRICULTIJRAL EDUCATION CUPRICULUM MATERIALS SERVICE

James E. Cummins, Director
Agricultural Education Service State Department of Education

Roger D. Roediger, Director
Ohio Agricultural Education Curriculum Materials Service

Copyright ©, 1986
Ohio Agricultural Education Curriculum Materiais Service The Ohio State University

All rights reserved

Ohio Agricultural Education Curriculum Materials Service
The Ohio State University
Room 254, 2120 Fyffe Road
Columbus, Ohio 43210-1099
1986

The inclusion of herbicide recommendations in this manual is pure f to provide information that can be used in working out this farm management problem. These recommendations, taken directly from the Ohio Agronomy Guide, are based on results of research at the Ohio Agricultural Research and Development Center, other state agricultural experiment statıOns, and the U.S. Department of Agriculture. No product endorsement or discrimination is intended, nor is any responsibility assumed for actual use of the products.

The Ohio Agricultural Education Curriculum Materials Service, as a part of The Ohio State University, is an equal opportunity employer and does not ciscriminate against any individuri for ceasons of race, color, creed, religion, national origin, or sex All instructional materials provided by the Ohio tigricultural Education Curriculum Misterials Service are available on a non-discriminatory basis without regard to race, color, creed, religion, national origin, or sex

CONTENTS

Preface and Acknowledgments 11
The Overview - Planning Ahead 1
Grading 1
Suggested Sequence for Developing the Farm Management Problem 2
Unit I. Crop Production Data 5
Liming 6
Corn 7
Soybeans 14
Small Grains 24
Forages 24
Harvest Management 25
Seeding Mixtures and Rates 26
Pasture 27
Suggested Rates and Dates of Seeding Important Ohio Crops 29
Unit II. Livestock Production Data 30
Nutrient Composition of Feed Stuffs Commonly Fed Cattle and Sheep 31
Metabolizable Energy, Vitamin, and Mineral Content of Swine Feeds 34
Average Nutrient Composition of Feeds Commonly Used in Horse Rations 35
Guidelines in Selecting Rations for: Dairy Cattle 36
Beef Cattle 38
Sheep 38
Swine 39
Horses (Mature) 39
Poultry 40
Space Requirements for: Livestock 41
Poultry 43
Horses 43
Breeding Recommendations 44
Unit III. Equipment and Supp es Cost Data 46
Buildings and Equiprt . nt Cost for Livestock 47
Equipment Cost and Custom Hire Rates 48
Acre-Hours for Tillage Implements and Other Equipment 49
Cost of Farm Supplies 50
Marketing Data 51
Unit IV. Transparency Masters following 52

1. Lime Requirements to Increase Soil pH to Four Levels2. Equivalent Amounts of Liming Materials3. Adjustments in Liming Ration for Depth of Plowing4. Examples of Nitrogen Recommended for Corn5. Examples of Phosphorus Recommended for Corn
2. Examples of Potassium Recommended for Corn
3. Buildings and Equipment Cost for a Farm Operation
4. Equipment Cost
5. Custom Hire Rates
6. Acre-Hours for Tillage Implements and Other Equipment - Part I
7. Acre-Hours for Tillage Implements and Other Equipment Part II
8. Cost of Farm Supplies - Part I
9. Cost of Farm Supplies - Part II
10. Marketing Data

PREFACE

The farm management problem is designed for vocational ayriculture students who require competency in both crop and livestock farming. The author has felt a need existed for some type of farm management problem or simulation that would be completed at or near the end of the student's vocational agriculture problem.

Students typically receive trainıng in topic areas such as crops, soils, fertlity, tillage, livestock selection, livestock feeding, and others. However, very little opportunity is afforded to put this training into a complete farm management problem, integrating all the areas. The author believes that completion of the farm management problem will give each student a better understanding of a commercial farming operation and its management.

A Farm Management Problem consists of a Teacher Guide and a Student Workbook. The teacher guide will provide you with the data, transparency masters, and other helpful information needed to work with your students. The student workbook provides a format for the students to plan and report information on their farm management problem. You will also find the student workbook helpful in the evaluation and grading of the students' work.

ACKNOWLEDGMENTS

Invaluable help and guidance were given to the writer in an overall review of A Farm Managennent Problem for accuracy and clarity by Dr. Roger Roediger, Director of the Ohio Agricultural Education Curriculum Materials Service and director of this project.

Technical assistance during the preparation of the manuscript was provided by Erdal Ozkan, Associate Professor, Department of Agricultural Engineering, The Ohio State University.

Rough draft typing of the manuscript was done by Donna Cackler. Jerry King executed the art work for the cover. Editing and layout were done by Muriel King, and the phototypesetting was done by Jacqueline Stuts.

Much information for both the teacher guide and the student workbook was lifted verbatim from the sources listed below and is used with permission. (Acknowledgment of each source so used is included at the bottom of the appropriate page.)

1) Livestock Nutrition and Feeding, Ohio Agricultural Education Curriculum Materials Service, The Ohio State University, Columbus, 1979.
2) Livestock Breeding, Ohio Agricultural Education Curriculum Materials Service, The Ohio State University, Columbus, 1979.
3) Ohio Agronomy Guide, Cooperative Extension Service, The Ohio State University, Columbus, 1985.
4) The Farm Management Guide, 15th edition, Doane-Western, Inc., St. Louis, MO, 1982.
5) Gillespie, James, Modern Livestock and Poultry Production, Delmar Publishers, Albany, NY, 1981.

THE OVERVIEW - PLANNING AHEAD

Questions you may want to consider when planning ahead for the farm management problem

Q: How much time should I plan on for this unit?
Most students would be able to complete this unit in 3 to 4 weeks of 50 -minute class periods.

Q: Should work be completed outside the classroom?
As will be explained later under "Instructor's Recommendations for the Use of Reference Materials," you as instructor may choose to have the students complete the study either inside or outside the classroom.

Q: How much instruction or help will the students need from me during this unit of instruction?
As this unit would be studied at the end of their vocational agrıculture program, the students should have enough general knowledge of farming and farm business at this time o complete the farm management problem with a minimum of instruction. Your role at this point should be one of guidance. Fxamples include helping with reference materials and giving ineas on planning the farm management problem.

As the instructor your involvement shouid include:

1. Instruction in getting started, the rules for the farm management problem, and use of the student workbook.
2. Suggestions regardıng the recommended reference materials, which tems to use, and how to use them. Overheads have been provided in the teacher's guide to help you with this task.
3. Review of the price list for the farm supplies the students will be working with. You may want to work out a sample problem on itenis of herbicide and fertilizer cost, or work a complete budget as a review.

GRADING

A good educational experience, recommended for all students after completion of their farm simulation, is to present the results to their classmates. They can then defend their reports against their classmates' questions and your questions. This can be a real learning experience for both the presenter and the students doing the questioning.

Avoid basing the grade on total profit from the farm management problern. Look instead at:

1. Crop rotation
2. Tillage and harvest planning
3. Herbicide programs
4. Budgeting

SUGGESTED SEQUENCE FOR DEVELOPING THE FARM MANAGEMENT FROBLEM

I. STUDENT'S CHOICES

In order to put some variation into the farm management problem, and to make each sturent's farm management problem one of a kınd, consider the following suggestions
A. Each student selects a livestock enterprise.

Develop your own list of anımal enterprises for the stidents or use the following list. The recommended goal is for each sturent in the class to have a different animal enterprise so that each student's farm management prob.em will be unique. The selections can be made by your assigning an enterprise to a particular student, or by having the students draw numbers. For example, for a class of 15 students, use 15 numbers. The student drawing number 1 gets first pick from the list, and so on. Or you can use some other selection process.

Suggested Animal Enterprises

Dairy - dairy cows	
	dairy heifers
	veal calves

Beef - feeder cali 3 s 650 to $1,050 \mathrm{lb}$
background calves 450 to 650 iv . cow and calf

> Poultry - layers broilers turkeys

Sheep - ewe and lamb feeder lamb

Hogs - feeder pig, confinement, high investment (new modern building) feeder pig, pasture, low investment (probably older 'tuilding) finishing
farrow to finish, pasture system farrow to finish, confinement

B Students select the type of farm: hill or flat.
As each student lays out plans in the student workbouk, he or she should first consider the economic implications of the land as related to his or her livestock enterprise.

For example:

- High demand for corn with a market hog operation is better met with use of a flat farm.
- High demand for pasture and hay with a cow-calf operation can be met with use of a hill farm.
- It may be difficult to justify a cow-calf operation on class I and II land that could cost between $\$ 70$
and $\$ 90$ per acre per year to rent or purchase.
C. Students develop field plans.

Selection of the crops that are to be grown in each field should be based on the needs of the livestock the student has selected and on current crop prices.

For example:

- If oats are bringing only $\$ 1.25$ per bushel, it miay be wise to put in the field some crop that could
produce more profit than oats
- Market hogs need corn for feed. Usually it does not pay to raise some crop besides corn and then buy grain off the farm and truck it in for feed.
D. Students develop a 4-year crop rotation plan based on acceptable crop management practices For example:

A student has a dairy operation and is feedıng high moısture corn and haylage The student wants to rotate a poor stand of alfalfa back to a new stand of alfalfa The solution may be like this
First year: No-till corn, with Paraquat and Atrazine used for weed control.
Second year: Soybeans as a cash crop, with careful planning as to herbicide use
Third year. Wheat, again with careful herbicide planning if alfalfa is to be reseeded in the late summer.
E Students develop a fertilizer program based on soil test results and yield goals
Students will use the information from the flat or hill farms and work with charts in the teacher's guide or the Ohio Agronomy Guide to calculate their fertil!zer needs for a crop Then they will record this information in the student workbook on the crrsp report sheets. Next they will use the price list in the back of this guide to calculate the cost they will use in their budgets in the student workbook or on the computer.

F. Students develop a weed control program.

The weed control program should be based on the nature of the weed problem given for the flat or hill fa rm in the farm management problem student workbook. The weed problem is placed in each field to force students to plan on using different herbicides when confronted with different weeds. Each student also needs to plan a general herbicide program for each field. This informatıon is reccrded by the student on the crop reporting sheet in the student workbook.

For example:

A field of corn has Canada thistles. If a student uses Atrazıne pius Lasso or Dual, he or she will get poor Canada thistle control in preplant or preemergence application methods. The siudent may have to make a repeat treatment with Banvel postemergence to get good control on this problem
G. Students develop crop and livestock budgets.

The rules on budgeting are outlined on the rules page in the farm management problem student workbook. When this is compleied, the student will have a good idea of what it costs to produce a crop, a head of livestock, or a product from the livesto k. The budgets can be done by the student with a computer, or the student can use the ones in the student workbook.

II. INSTRUCTOR'S RECOMMENDATIONS FOR USE OF REFERENCE MATERIALS

In this teaching guide, many sources of data have been provided for you, the instructor. The intent of this teaching guide is to provide you with an outline of the types of data the student will need to complete the farm management problem. Several samples of data are provided for you as overheads to help you instruct your students on the use of the different data tables.

You may want to copy the data in this teaching guide for student use in preparing the farm management problem. Howe ser, you are strongiy urged to use the sources of data that the students have been familiar with throughout their vocational agricuiture program. Use by the students of familiar reference materials tends to shorien the time required for completion of the farm management problen. Also, the students should be using reference materials that they wili have access to when they are out of school and in farming or agribusiness.

As instructor, you will need to consider how the reference materials will be used and controlled It is advised to limit the students' use of the reference materials to class time. Control at that time is much easier for you. You can minimize the amount of material you need, and you do not need to use a sign-out system. Even when the students are to work on their projects in study hall or for homework, they can obtain the needed data while in class and make their calculations later. At the introduction of this unit, you can illustrate to the students how this can be done.

Suggested Reference iist
 (for class of 15 students)
 15 Ohio Agronomy Guide or Crop Production books
 3 Livestock Nutrition and Feedirg student manuals
 1 Livestock Breeding student manual
 1 Doanu's The Farm Management Guide
 1 Livestock Enterprise Budgets
 1 Crop Enterprise Budg ،s

Note: Estimated cost of all the above references, ordered from the Ohio Agricultural Education Curriculum Materials Service, is $\$ 65.00-\$ 75.00$.

III POSSIBLE CHANGES BY THE INSTRUCTOR

There are changes you as instructor could make to adapt ti,e farm management problem to a given situation in your area. Most of these changes could be done on the farm layout page of the student workbook.

A Change soil test to match your soil conditıons.
B. Change weed problems to match your area.
C. Change field layout or land class to match fields in your area.
D. Change acreages to match fields in your area.
E. Have students develop a marketing plan for the crops and 'ivestock.

F Have students calculate equipment and building costs.
Note: Keep in mind that this farm management prot'em is designed for a class that is 50 minutes long per day, running for 3 to 4 weeks. If changes E and F are used, the farm management problem could be lengthened by 1 to 2 weeks.

UNIT I

CROP PRODUCTION DATA

A In this unit, data will be provided for you to use with your students. These data will help them complete the crop reporting sheets and crop budgets in the farm management problem (Other scurces of data can be used if you so desire.)
B. It is suggested that you make this information or comparable information available to your students in the vo ag department.

C The sources of data for this unit include
Excerpts from the Ohio Agronomy Guide (Bulletin 472, 1985 revision, Ohio Cooperative Extension Service)

Liming - pages 18-19
Corn - pages 23-24, 31-38
Soybeans - pages 48-58
Small Grains - pages 41-42
Forages - pages 62-67
Pasture - pages 74-75
Suggested Rates and Dates of Seeding - Inside back cover

LIMING

Determination of Lime Requirement - The soll pH test measures active soil acidity or alkalinity The lime requirement is determined by the lime cest index, which measures total exchangeable soll acidity. The lower the lime test index is be ow 68 , the higher the lime requirement The follo wing table shows the relationship between lime test index and lime requirements to different soil pH levels.

Lime Requirements to Increase Soil pH to Four Levels (in terins of T/A ag-ground limestone, TNP 90+, 8 inch plow depth)

Lime Test Index	pH Levels			
	Miner ol Soils			Organic \qquad 5.2
	7.0	d. 5	6.0	
	Tons per Acre-Ag-Ground Limestone			
68	1.	1.2	1.0	07
67	24	21	17	1.3
66	34	2.9	2.4	1.8
65	4.5	38	3.1	24
64	5.5	47	3.8	2.9
63	65	55	4.5	3.5
62	75	6.4	52	4.0
61	86	7.2	59	4.6
60	96	8.1	66	5.1
59	106	90	7.3	57
58	117	9.8	80	6.2
57	127	107	8.7	6.7
56	137	11.6	9.4	7.3
55	148	125	10.2	7.8
54	158	134	10.9	8.4
53	169	142	11.6	8.9
52	179	15.1	12.3	9.4
51	190	160	13.0	100
50	200	16.9	137	10.5
49	211	178	14.4	$11 . C$
48	221	18.6	15.1	116

Theso values must be adjusted for type af material, plaw depth and lime credit

The reason for different ratings based on particle size is the difference in surface. The finer the liming materials, the greater the surface area and the faster it reacts with acid soil. Extremely coarse material, i.e., larger than 8 -mesh, is not considered because it reacts slowly in the soil.

The total neutralizing power (T.N.P.) of liming materials has a wide range. This range is due to the variations in the percentage of calcium and/or magnesium and impurities, such as silt and clay, contained in the limestone. When the T.N.P. of the liming material is less than 90, an adjustment should be made to account for this lower T.N.P.

Equivalent Amounts of Liming Materiais (hased on TNP and fineness)

	T.N.P.	Fineness \% Passing Mesh Size				Pounds to equal 1 ion of Agr'l	
						Ground	\% of
						Limestone	Ag.
						90	Ground
Grade						or higher	to
						T.N.P.	Apply
		100	60	20	8		

AGRICULTURAL LIMESTONES AND/OR SLAG (air cooled)							
Hydrated	$16 \mathrm{C}+$	90	95	98	100	1000	50
Hydrated	130-140	"	"	\cdots	\cdots	1200	60
Ag-Superfine	$90+$	80	95	100	100	1600	80
	80-89	"	"	"	.	1800	90
Ag-Pulverized	$90+$	60	70	95	100	1700	85
	80-89	'	"	"	"	1900	95
Ag-Ground (Base)	$90+$	40	50	70	95	2000	100
	80-89	"	"	"	"	2300	115
Ag-Fine Meal	$90+$	30	40	60	85	2500	125
	80-89	"	"	"	"	2800	140
Ag-Coarse Meal	$90+$	20	30	50	80	2900	145
	80-89	"	"	"	"	3200	160
Ag.Fine Screenings	$90+$	10	20	45	80	3400	170
	80-89	"	"	"	"	3800	190
Ag-Caarse Screenings	$90+$	5	15	40	80	4000	190
	80-89	"	"	"	.	4300	215
AGRICULTURAL GRANULATED SLAG (water cooled)							
Ag-Granulated Slag	$90+$	10	15	60	95	2000	100
	80-89	"	"	"	"	2300	115

Adjust for Depth of Plowing - If plowing will be to a depth of 9 inches instead of 8 inches, additional lime will ber required to react with the larger volume of soil in olved.

The 3 -inch plowing depth is given in the following table, and the factor 1.13 is listed in the right column. The 5 tons per ac: $\stackrel{\rightharpoonup}{ }$ is multiplied by 1.13 to determine the amount of lime to apply (5 x $1.13=565$). In this example, 5.65 tons per acre should be applied. Depth of plowing adjustments will be made on your soil test form if the depth of plowing is notec on the soll information sheet sent to the Research-Extension Analytical Laboratory (REAL).

Adjustments in Liminq Ration for Depth of Piowing

CORN

Fertilizer Recommendations

Fertilizer recommendations are listed in separate tables for $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$, in the production practices of each crop

To estimate the amount of phosphorus needed in the annual recommendation for corn, the follow.ng assumptions will be used - yield goal of 150 bushels per acre and a soll test value of 15 pounds P per acre. In Table 1, the yield goal falls under the 150 bushels per acre column and the 15 pounds P per acre is between the 10 and 20 pounds per acre The values in the table are as follows

> 10 Its. P/A
> 20 lbs. P/A
$150 \mathrm{bu} / \mathrm{A}$
100
80
The soll test of the example of 15 pounds per acre is halfway between 10 and 20 , therefore the $\mathrm{P}_{2} \mathrm{O}_{5}$ recommendation is halfway between 100 and 80 or 90 pounds $\mathrm{P}_{2} \mathrm{O}_{5}$ per acre.

Similarly, to estimate the amount of potassium needed, the following assumptions will be used - yield goal 150 bushels per acre, soil test value of 200 pounds K per acre and a CEC of 15. In Table 2, the yield goal falls inder the 150 bushels per acre column, the soll test value of 200 pounds K per acre is halfway between 150 and 250 in the pounds K per acre column, and the CEC of 15 is half way between the 10 and 20 CEC columns. The values in the table are as follows

	150 bu/A		
		C.E.C.	
10 K/A	10	20	30
150	90	110	
253	50	70	

After calculating for a CEC of 15 , this segment of the table would be as follows

$\mathrm{lb} \mathrm{K} / \mathrm{A}$	C.E.C. $\mathbf{1 5}$
150	100
250	60

Then to determine the annual recommendation of $\mathrm{K}_{2} \mathrm{O}$ per acre for a 200 -pound K per acre soll test value, simply find the midpoint between 100 and 60 or 80 pounds $\mathrm{K}_{2} \mathrm{O}$ per acre.

Table 1. Examples of Phosphorus (expressed as $\mathrm{lb}_{\mathrm{P}} \mathrm{P}_{5} / \mathrm{A}$) Recommended for Corn (Broadcast Program)

- Boldface numbers are the approximate amounts of crop removal

Table 2. Examples of Potassium (expressed as $\mathrm{Ib} \mathrm{K}_{2} \mathrm{O} / \mathrm{A}$) Recommended for Corn (Broadcast Program)

Soil Test Value	Yield Goals (Bu/A)								
	$\begin{gathered} 120 \\ \text { C.E.C. } \end{gathered}$			$\begin{gathered} 150 \\ \text { C.E.C. } \end{gathered}$			$\begin{gathered} 180 \\ \text { C.E.C. } \end{gathered}$		
	10	30	30	10	20	30	10	20	30

lb K/A

Annual Recommendation ${ }^{1}$

50	120	140	160	130	150	170	140	160	180
150	80	100	120	90	110	130	100	129	140
250	40	60	80	50	70	90	60	80	100
350	30	30	40	40	40	50	50	50	60
450	0	20	30	0	30	40	20	40	50
550	0	0	0	0	0	0	0	0	20

-Boldface riumbers are the approximate amounts of crop removal

Table 3. Examples of Nitrogen Recommended for Corn

Previous Crop		Yield Goals (Bu / A)	
	120	150	180
		Annual Application $1 \mathrm{~b} / \mathrm{A}$	
Forage Legurne	60	110	150
Grass Crop	65	170	200
Soybeans	85	190	200
Continuous Corn and Other	Crops 115	200	200

Plant Populations

In general, a final plant stand of 24,000 plants per acre will producs optimum yields in Ohio; however, some hybrids may require higher populations to achieve their yield potential. Rely on the advice of your seed producer regarding the plant populations recommended for the hybrids being grown.

Plant population recommendations are based on the stand at harvest. In general, there is a decrease of 10 to

15 fercent from planter manual setting for seed drop per acre and the resulting stand of corn at harvest. To obtain the recommended harvest stand, it is suggested that the planter be set to drop 20 percent more seeds than the desired stand for plant population below 20,000 plants per acre For plant populations above 20,000, set the planter to drop 10 percent more seeds than the recommended harvest stand.

CORN (continued)

Weed Contral

Soll residues of the persistent triazines, atrazin ; and simazine may remain in the soil and injure susceptible crops following corn. Do not use any atrazıne or simazine if a crop other than corn or sorghum is to be planted the same growing season. in:s includes small grain in th jiowing corn On areas to be seeded to oats. $\varepsilon \quad$ jer and forage grasses the following spring, . .nore than $08 \mathrm{lb} / A$ active ($1 \mathrm{lb} / A 80 \mathrm{WP}$, or $0.9 \mathrm{lb} / \mathrm{A}$ oI DF Nine-O, $08 \mathrm{qt} / \mathrm{A}$ of 4L) of atrazine and/ or simazine On areas to be planted to soybeans or sunflowers the following year, use no more than $1.6 \mathrm{lb} / \mathrm{A}$ active (2 lb/A of 80 WP, or $175 \mathrm{lb} / \mathrm{A}$ of DF Nine-O, or 16 qt / A of 4 L).

If the amount of atrazine and/or simazine is to be reduced pelow that needed for weed control because of anticipated injury to the following crop. Bladex can be added in the amount equal to or slightly higher than this reduction An example, if $2^{1 / 2} \mathrm{lb} /$ A of atrazine is needed to control the weeds in corn and the areais to be planted to soybeans the next year, reduce the amount of atrazue to 1 to $1 / 2 \mathrm{lb} / \mathrm{A}$ and add $11 / 2$ to $13 / 4 \mathrm{lb}$ Bladex. Also, three-way mixtures such as Bladex-Atrazine-Lasso, Bladex-Princep-Lasso, Bladex-Atrazine-Sutan, Bladex-Atrazine-Dual, and others can be used to reduce the carry-over hazard, yet have enough triazine to assure good weed control

HERBICIDE RECOMMENDATIONS FOA CORN

Herbicide	Active Ingredient per Acre	Pormulated Product per Acre	Water Overall ($\mathrm{gel} / \mathrm{A}$)	Remarks

Bladex
$80 \mathrm{~W}-2: / 2$ to $61 / 4 \mathrm{lb} . \quad 25$ or more $90 \mathrm{DF}-21 / 4$ to $5 \mathrm{l} / 2 \mathrm{lb}$. $4 \mathrm{~L}-2$ to 5 qt .
(Use alone or in crmbination with atrazine. Lasso, Dual, paraquat, ?,4-D and/or Baive'. See Bladex label for rates for vai:nיs combinations.)

Bladex applied alone or in combination with atrazine and/or Lasso or Dual will kill most existing small weeds and suppress many emerged perennial weeds when corn is planted into stalk ground (corn, sorghum), stubble ground (soybean, small grains), and any minimum-till situation. This treatment then provides residual control of annual weeds as in conventional tillage. Add $\frac{1}{2}-1 \mathrm{pt} / \mathrm{A}$ of $2,4-\mathrm{D}$ Low Volatile 6 lb . Ester ($0.75-1.5 \mathrm{pt} / \mathrm{A} 2,4-\mathrm{D}$ LV 4 lb. Ester). Add the $2,4-\mathrm{D}$ LV to the spray tank last. Use a minımum of 25 gals/A carrier. Complete spray coverage of the weeds is essential for best performance. Nitrogen solutions and complete liquid fertilizers are the preferred carriers for this treatment as they help aid in the burndown of existing weeds. Add X-77 surfactant at 1-2 qts. per 100 gals . of diluted spray, or other suitable surfactant at its recommended rate. Apply before weeds exceed $3^{\prime \prime}$ in height. For control of existing alfalfa add $1 / 3$ to $3 / 4 \mathrm{pt} / \mathrm{A}$ of Banvel to the spray mixture. Apply before the olfalfa exceeds $6^{\prime \prime}$ in height. For fields with existing sod grasses such as orchardgrass, bromegrass, rye or timothy, or when very dry conditions exist, or when existing weeds exceed $3^{\prime \prime}$ in height add paraquat to the tank-mix. Use 2 pts/A of paraquat in combination with Bladex except the $2,4-\mathrm{D}$ LV may be omitted if desired. Do not apply paraquat in suspension type liquid fertilizer.

Herbicide Recommendations for Corn (contınued)

	Active Ingredient per Acre	Formulated Product per Acre	Water Overall (gla/A)

reduced tillage such as chisel, pield cultivator or disk on stalk land

Where the tillage operation(s) does not eliminate all the weeds prior to planting, use one of the treatments in the previous section (No-Tillage--in corn stalks or other tilled crop residue). These treatments will kill the existing vegetation and also give residual control. See the "Remarks" following each treatment for the specifics of the treatments. In most situations, the rate of Paraquat should be only 1 pint per acre.

Herbicide Recomme tions !or Corn (contınued)

Atrazine plus Lasso, atrazine plus Dual, Bicep (combination of atrazine and Dual), atrazine plus Bladex 80W (not Bladex 4L), Bladex 80W, and Lasso) may also be applied early post-emergence to 4-leaf stage of corn. Prowl plus atrazine and Prowl plus Bladex 80W (not Bladex 4L) may be applied to corn from emergence to the two-leaf stage of the corn. Weeds, especially grasses, must be small (1 to 2 inches) for effective control. Do not use crop oil with these treatments.

2,4-D LV Ester -- or -- 2,4-D Amine	$1 / 4 \mathrm{lb}$ $1 / 3$ to $1 / 2 \mathrm{lb}$.	$1 / 2 \mathrm{pt}$ 2/3 to 1 pt	10 or more	Apply overall when weeds are up, but small. Controls only broadleaf. Damage always possible if cultivation or windstorms follow soon after appli-cation--hazard greater as corn gets larger and following a period of high temperatures ($85^{\circ} \mathrm{F}$ and above). Use drop nozzles when corn is above 8 to 10 inches tall. Do rot apply from time corn tassels to dough stage. U'e precaution to prevent drift. Ester formulations mure volatile than am!nes.

Herbicide Recommendations for Corn (contınued)

Herbicide	Active Ingredient per Acre	Formulated Product per Acre	Wate: Overall (gla/A)	Hemarks
Banvel -- Or --	1/4 16.	1/2 pt.	10 or more	Apply after weeds are up. Small weeds are easier killed. Can be applied over the top of corn until 24 inches tall or until 15 days before tassel emer-
2,4-D Amine plus	$1 / 4 \mathrm{lb} .$	1/2 pt.		gence whichever occurs first. Do not apply after that growth stage. Drops can be used with Banvel and may be desired for more effective spray place-
Banvel	$1 / 8 \mathrm{lb}$	1/4 pt.		ment and drift control. Mix with 2,4-D for broader spectrum weed control. Banvel K pre-mix available. Caution: Soybeans are very sensitive to Banvel. To minimive spray drift potential onto soybeans and other sensitive crops follow label directions.
Buctril/Brominal	1/4 to 1/2 1b.	1/2 to $1 / 2 \mathrm{pt}$. (See Remarks)	20 or more	Buctril and Brominal both contain the herbicide bromoxynil. The amount of active ingredient in Buctrıl is $2 \mathrm{lb} / \mathrm{gal}$. and in Brominal is $4 \mathrm{lb} / \mathrm{gal}$. Therefore the amount of product per acre will vary. Refer to the respective labels for specific rates. Apply when broadleaf weeds are small (See label). Can be applied over the top of corn up to the 8 leaf stage. Use flat fan nozzles and a minimum spray pressure of 30 psi . Do not add a spray additive or mix with liquid fertilizers. A second application may be made if a new flush of weeds occurs following the first application. The higher rate will suppress Canada thistle (foliage burn) when applied $8^{\prime \prime}$ to bud stage. May be applied aerially in 5 to 7 gallons of water per acre. Some leaf-burn of corn may occur but normally it will rapidly recover and no loss of yield will occur.
Buctril/Brominal plus Atrazine	$1 / 4$ to $1 / 2 \mathrm{lb}$. 1 to 1/41b.	1/2 to $11 / 2 \mathrm{pt}$. (See Remarks) $80 \mathrm{~W}-11 / 4$ to $11 / 2 \mathrm{lb}$. $90 \mathrm{DF}-1.1$ to $13 / 8 \mathrm{lb}$. $4 \mathrm{~L}-1$ to $1 / 4 \mathrm{qt}$.	20 or more	Apply when broadleaf weeds are small (See label) Control of pigweeds up to the 6-leaf or 4 inches plus residual control of subsequent germinating weeds.
Buctril/Brominal plus $2,4-D$	```1/4 to 1/2 lb. 1/4 lb.```	$1 / 2$ to $11 / 2 \mathrm{pt}$. (See Remarks) $1 / 2 \mathrm{pt}(4 \mathrm{lb} / \mathrm{ga} \mathrm{l})$	20 or more	Apply when broadleaf weeds are small (See label). Control of wild mustards larger than 4-leaf or 4 inches. When corn exceeds 8 inches in height, drop nozzles must be used.
Basagran	$3 / 4$ to 116.	$3 / 4$ to 1 gt .	20 or more	Will control most annual broadleaf weeds. Will offer partıal control of Canada thistles and yellow nutsedge. Is more effective if applied to weeds when they are in the 2 to 6 -leaf stage. On taller corn, use at least 40 psi pressure or drop nozzles to get better coverage of weeds. The addition of a surfactant or crop oil will improve control on difficult to kill species or on large weeds. Two 3/4-quart applications may give better control than one $11 / 2$-quart application on hard to control weeds. Atrazine at 1 to $2 \mathrm{lb} / \mathrm{A}$ may be mixed with Basagran for added control of broadleaf and grassy weeds and to give residual control.
Evik (with surfactant)	216	$21 / 2 \mathrm{lb}$.	20 or more	Apply as a directed spray with drop nozzles. Will injure corn if spray is applied over the top. Corn should be over 8 to 10 inches tall and broadleaf and grass weeds no taller than 4 to 5 inches. Will control most annual broadleaf and prass weeds including 3 to 4 inch tall panicum. Increase spray volume if severe infestation of weeds.

Prow -- or --	$1 / 2$ to $11 / 2 \mathrm{lb}$.	1 to 3 pt.
Treflan	$3 / 8$ to 1 lb.	$3 / 4$ to 2 pt.

Cultivate-Spray system. These herbicides can be used to prevent late germinating annual grasses i corn. Application can be made from 4 to 8 inch corn up to layby; however, corn must be cultivatc. before application so that soil is moved into the row around the corn plants. Incorporation of the herbicide by cultivation after application must be accomplished within 24 hours for Treflan and 7 days for Prow 1.

Preplant Incorporate

Eradicane	${ }^{1} \mathrm{G}$	E	E	E	E	F	G	F	G	G	P	P	P	P	P	p	$\overline{\mathbf{r}}$	P	P	P	F	G	P	P	P
Sutan +/Genate Plus	G	E	E	E	E	P	G	P	G	G	P	P	P	n	P	P	P	P	P	P	P	G	P	P	P
Atrazine	E	G	F	P	F	F	n	6	P	\underline{T}	G	P	F	F	F	G	E	G	G	G	E	E	E	G	G
Bladex	G	G	G	F	F	P	P	「	P	P	G	P	G	P	P	G	E	G	F	F	E	F	E	F	F
Simazine	E	F	G	F	F	P	F	F	P	P	G	P	E	P	P	G	E	G	F	F	E	E	E	F	F
Eradicane + Atrazıne	G	E	E	E	E	F	G	G	G	G	G	P	G	P	P	F	E	F	F	F	E	E	G	F	F
Sutan + Atrazine	G	E	E	E	E	P	G	F	G	G	G	P	G	P	$?$	F	G	F	F	F	E	E	G	F	F
Sutan + Bladex	G	E	E	E	E	P	G	F	G	G	G	P	G	P	P	F	G	F	F	F	E	F	G	F	P
Atrazine + Bladex	E	G	G	F	F	P	P	F	P	P	G	P	E	P	P	G	E	G	G	F	E	G	E	G	F
Lasso or Dual ${ }^{2}$	G	E	E	E	E	P	P	P	P	G	P	P	G	P	P	P	F	P	P	P	F	G	F	P	P
Atrazine + Lasso or Dual	G	E	E	E	E	P	P	F	P	G	G	P	E	P	P	F	G	F	F	F	E	E	E	F	F

Preemergence

| Atrazine | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{P} |
| :--- |
| Bladex | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{F} | \mathbf{E} | \mathbf{F} | \mathbf{P} |
| Simazine | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{P} |
| Atrazine + Bladex | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{G} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{P} |
| Atrazine + Simazine | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{G} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{P} |
| Lasso or Dual | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{P} |
| Atrazine + Lasso or | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{P} |
| Dual | |
| Bladex + Lasso or Dual | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{P} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{P} |
| Prowl | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{P} |
| Atrazine + Prowl | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{P} |
| Bladex + Prowl | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{P} |
| Ramrod | \mathbf{G} | |
| Atrazine + Ramror | \mathbf{E} | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{P} |
| | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{P} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{P} | | |

Postemergence

| Atrazine + oil | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{F} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{E} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{G} |
| :--- |
| Bladex-80W | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{P} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{E} | \mathbf{F} | \mathbf{E} | \mathbf{F} | \mathbf{P} |
| $\mathbf{2 , 4 - \mathbf { D }}$ | \mathbf{F} | \mathbf{P} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{P} |
| Banvel | \mathbf{F} | \mathbf{P} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{E} | \mathbf{G} | \mathbf{P} |
| Basagran | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{G} | \mathbf{F} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{P} |
| Evik | \mathbf{F} | \mathbf{G} | \mathbf{E} | \mathbf{E} | \mathbf{E} | \mathbf{P} | \mathbf{F} | \mathbf{P} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{F} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{G} | \mathbf{F} |
| Brominal/Buctril | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{F} | \mathbf{E} | \mathbf{F} | \mathbf{F} | \mathbf{E} | \mathbf{G} | \mathbf{G} | \mathbf{P} | \mathbf{G} | \mathbf{G} | \mathbf{F} | \mathbf{E} | \mathbf{E} | \mathbf{E} |

[^0]
SOYBEANS

Fertilizer Recommendations

Soil pH. Generally, soybeans produce the largest yields when the soil pH is between 6.2 and 7.0

Nitrogen. The soybean is a legume and can fix adequate atmospheric nitrogen to produce a yield of at least 70-80 bushels per acre
Examples of Phosphorus (expressed as $\mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{A}$)
Recommended for Soybeans

Soil Test Value	Yield Goals (Bu/A)				
	40		60		80
1 b P/A	Annual Recommendation				
10	55		70		85
20	45		60		75
30-60	35		50		65
70	25		40		55
80	20		30		45
90	0		20		35
16	0		0		25

Underimed numbers are the approximate amounts of crop removal

Exampies of Potassium (expressed as Ib $\mathrm{K}_{2} \mathrm{O} / \mathrm{A}$)
Recommended for Soybeans

Soil Test Value	Yield Goals (Bu / A)								
	$\begin{gathered} 40 \\ \text { c.e.c. } \end{gathered}$			$\begin{gathered} 60 \\ \text { c.e.c. } \end{gathered}$			$\begin{gathered} 80 \\ \text { C.E.C. } \\ \hline \end{gathered}$		
	10	20	30	10	20	30	10	20	30
1 b K/A	Annual Recommendation								
50	110	120	130	140	150	160	190	200	210
150	90	100	110	120	130	140	170	180	190
250	70	80	90	100	110	120	150	160	170
350	55	60	70	B5	90	100	130	140	150
450	50	55	55	80	85	85	110	115	115
550	30	40	50	60	70	80	90	100	110

Underlined numbers are the approximate amounts of crop removal

Weed Control

With the earlier development of pre-emergence herbicides and the more recent development of the postcmergence materials for soybeans, there has been a tendency to control weeds without cultivation.

Several soybean herbicides may cause injury to soybeans, especially when herbicide rates are increased to improve control of problem weeds. Fortunately, soybeans usually outgrow modest amounts of early
injury with little or no effect on yield Under unusual environmental conditions, severe injury has been obtained with Lorox/Linex and Sencor/Lexone. Sencor/Lexone injury to soybeans can be compounded by any atrazine or simazine carryover problem from the previous year. To reduce or elimınate this problem, use no more than 1.6 pounds active per acre (2 lb .80 W) of atrazine or simazine the year before planting soybeans.

EFFECTIVENESS

PREPLOW
$\begin{array}{llllllllllllllllllllllllllllllllll}\text { Dowpon M } & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{P} \\ \text { Roundup } & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{F} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P}\end{array}$
PREPLANT INCORPORATE
Prowl, Treflan
Sencor/Lexone + DNA 1
Lasso, Dual
Sencor/Lexone + Lasso,
Dual
Vernam/Reward
Vernam/Reward + DNA
DNA \& Basagran
DNA \& Blazer
DNA \& Dyanap
PREEMERGENCE

G	E	E	E	P	E	F	G	P	3	P	-	P	P	P	P	P	P	P	P	P	P	F	r	G			P
F	E	E	E	P	E	F	G	P	G	P	-	P	P	P	P	P	P	$\stackrel{\mathrm{F}}{\mathrm{F}}$	G	F	G	E	P	E	E	-	E
G	E	E	E	P	E	P	F	P	F	P	-	G	P	G	P	P	P	P	P	P	P	P	P	G	P	P	P
F	E	E	E	P	E	P	F	P	F	P	-	G	P	G	P	P	P	F	G	F	G	E	P	E	E	G	E
F	E	E	E	P	E	P	G	P	G	P	-	G	P	P	P	P	P	P	P	P	P	F	P	G	P	F	P
G	E	E	E	P	E	F	G	P	G	P	-	G	P	P	P	P	P	P	P	P	P	F	P	G	P	F	P
G	E	E	E	P	E	F	G	P	G	P	-	G	P	P	P	P	F	E	G	G	G	G	P	G	G	G	
F	E	E	E	P	E	F	G	P	G	P	-	P	G	G	P	F	F	G	E	G	G	F	F	E	G	P	
F	E	E	E	P	E	F	G	P	G	P	-	P	G	G	P	F	F	G	G	G	G	F	P	G	G	P	G

A miben	G	G	G	G	P	G	P	P	P	P	P	P	P	P	F	P	P	P	P	G	P	P	G	P	G			P
Lasso, Dual	G	E	E	E	P	E	P	P	P	P	P	P	F	P	G	P	P	P	P	P	P	P	G	P	G	P	F	P
Amiben + Lasso, Dual	G	E	E	E	P	E	P	P	P	P	P	P	F	P	E	P	P	P	P	G	P	P	G	P	E	G	F	P
Sencor/Lexone	F	P	P	P	P	P	P	P	P	P	P	P	p	P	P	P	P	P	F	G	F	G	E	P	E	E	${ }_{\text {G }}$	-
Sencor/Lexone + Lasso, Dual	F	E	E	E	P	E	P	P	P	P	P	P	F	P	G	P	P	P	F	G	F	G	E	P	E	E	G	G
Lorox/Linex	F	P	P	P	P	P	P	P	P	P	P	P	P	P	F	P	P	P	P	G	P	P	E	P	E	E	F	
Lorox/Linex + Lasso, Dual	F	E	E	E	P	E	P	P	P	P	P	P	F	P	E	P	P	P	P	G	P	P	E	P	E	E	F	
Surflan, Prowl	F	E	E	E	P	E	P	F	P	P	P	F	P	P	P	P	P	P	P	P	P	P	F	P	G	P	P	
Sencor/Lexone + Surilan, Prowl	F	E	E	E	P	E	P	F	P	P	P	F	P	P	P	P	P	P	F	G	F	G	E	P	E	E	$\stackrel{\text { G }}{ }$	P
Lorox/Linex + Surflan, Prowl Modown	F	E	E	E	P	E	P	F	P	P	P	F	P	P	F	P	P	P	P	G	P	P	E	P	E	E	G	F
	F	P	P	P	P	P	P	P	P	P	P	P	P	F	F	P	P	P	P	P	P	G	E	P	E	G	G	P
A miben + Sencor/Lexone + Lasso, Dual	G	E	E	E	P	E	P	P	P	P	p	P	F	P	E	P	P	P	F	G	F	G	E	P	E	E	G	F

AT CRACKING

postemergence

Alanap + 2,4-DB	F	P	P	P	P	P	P	P	P	P	F	P	P	P	P	P	P	P	G	G	G	G	G	P	F	P	P	E
Amiben	G	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	F	G	P
Basagran	G	P	P	P	P	P	P	P	P	P	P	P	G	P	P	F	F	G	E	G	G	G	G	P	P	G	G	C
Basagran + 2,4-DB	F	P	P	P	P	P	P	P	P	P	P	P	G	G	P	F	F	G	E	G	G	G	G	P	P	G	G	G
Blazer	F	P	F	F	P	G	P	F	P	P	P	P	P	E	E	F	G	F	G	E	G	G	F	G	E	G	F	F
Blazer + 2,4-DB	F	P	F	F	P	G	P	F	P	P	P	P	P	E	E	F	G	F	E	E	G	G	F	G	E	G	F	F
Dyanap	F	P	P	P	P	P	P	P	P	P	P	P	P	G	G	P	F	F	G	G	G	G	G	P	P	F	P	F
Fusilade	E	E	E	E	G	E	E	E	G	E	E	E	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Hoelon	E	E	E	E	P	E	P	P	P	P	E	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Posst	E	E	E	E	G	E	E	E	F	E	E	E	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Roundup: RCS, WA ${ }^{2}$	G	-	-	-			G	G		G	E			-	-	P		G	G	G	G	G						

DIRECTED POSTEMERGENCE

Lorox/Linex	F	G	G	G	P	G	P	F	P	F	P	$?$	F	F	G	G	F	F	G	G	G	G	G	F	G	G	G	?
Lorox/Linex + 2,4-DB	F	G	G	G	P	G	P	F	P	F	P	?	F	E	G	G	F	F	E	G	G	G	G	F	G	G	G	?
Sencor	F	G	G	G	P	G	P	F	P	F	P	\%	F	F	P	E	F	F	E	G	G	G	G	F	G	G	G	?
Sencor + 2,4-DB	F	G	G	G	P	G	P	F	P	F	P	?	F	E	P	E	F	F	E	G	G	G	G	F	G	G	G	?

HERBICIDE RECOMMENDATIONS FOR SOYBEAN:

PREPLANT INCORPORATED

A disk or field cultivator typically incorporates herbicides half the depth they are set to cut into the soll. The following treatments should be incorporated 2 to 3 inches deep. Therefore, a disk or field cultivator should be set to cut 5 to 6 inches deep into the soil. Two passes with a disk or field cultivator at 5 to 7 mph are typically needed for best results. The second pass should be a little shallower than the firs: Power driven equipment incorporate herbicides to the depth they cut into the soil. Therefore, they should be set to cut 2 to 3 inches decp into the soil and run at 4 to 5 mph. One pass is usually adequate with power driven equipment.
Prewl $3 / 4$ to $1 \frac{1}{2} \quad 1 \frac{1}{2}$ to 3 pt 15 or more

Controls annual grasses, johnsongrass seedlings, lambsquarter and pigweed. Usuallv provides some velvetleaf suppression. Incorporate 2 to 3 inches deep within 7 days after application. Incorporation is not necessary if at least $1 / 4$ inch of rainfall occurs within 7 days after application. May be applied on dry bulk fertulizer. See herbicide label for use rate on appropriate soils. To improve broadleaf weed control, Sencor/Lexone ($1 / 4$ to $1 / 2$ ib active/A), Lorox/Linex ($1 / 2$ to 1 lb active/A), or Amiben (1.8 to 2.7 lb active/A) may be applied as a preemergence overlay.
Treflan $\quad:$ to $2 \frac{1}{2} \mathrm{pt} \quad 15$ or more

Controls annual grasses, johnsongrass seedlings, lambsquarter and pigweed. Incorporate 2 to 3 inches deep within 24 houss of application. May be applied on dry bulk fertilizer. See herbicide label for use rates on appropriate soils. To improve broadleaf weed control, Sencor/Lexone ($1 / 4$ to $1 / 2$ lb active/A), Lorox/Lines ($1 / 2$ to 1 lb active/A), or Amiben (1.8 to 2.7 lb active/A) may be applied as a preemergence overlay.

Herbicide Recommendations for Soybeans (contınued)

Herbicide	Active Ingredient (lb/A)	Formulated Product per Acre	Water Overall (gal/A)	Remarks
PREPLANT INCORPORATED - (continued)				
Vernam Reward	$\begin{aligned} & 2 \text { to } 3 \\ & 2 \text { to } 2 \frac{1}{2} \end{aligned}$	$21 / 3$ to $3 \frac{1}{2}$ pt 15 or more $22 / 3$ to $31 / 3$ pt		Vernam contains $7 \mathrm{lb} / \mathrm{gal}$ vernolate while Reward contains $6 \mathrm{lb} / \mathrm{gel}$ vernolate plus an extender. Controls annual grasses, yellow nutsedge, johnsongrass seedlings, and some broadleaf weeds. Provides some suppression of annual morningglory and velvetleaf. Incorporate 2 to 3 inches deep immediately after application. Some stunting and/or leaf deformity may occur. May be applied on dry bulk fertılizer. See herbicide label for use rate on appropriate soils. To improve broadleaf weed control, Lorox/Linex ($1 / 2$ to 1 lb active/A) or Amiben (1.8 to 2.7 lb active/A) may be applied as a preemergence overlay. Do not use Sencor/ Lexone with Vernam at the full rates of application as severe injury may occur.
Vernam/Reward plus	2 to 31	$21 / 3$ to $3 \frac{1}{\frac{1}{2}} \mathrm{pt}$	15 or more	For use mannly where seedling johnsongrass and yellow nutsedge are a problem in the same field; or where stronger activity on seeding ihnsongrass or shattercane is desired. Also controls annual grasses and several
Prowl or Treflen	3/4	11/ pt		broadleaf weeds. Incorporate 2 to 3 inches deep immediately after application. The chance of Vernam/Reward injury is reduced with the tankmix. May be applied on dry bulk fertilizer. To improve broadleaf weed control, Lorox/Linex ($\frac{1}{2}$ to 1 lb active/A) or A miben (1.8 to 2.7 lb active/ A) may be apphed as a preemergence overlay. Vernam/Reward: Treflan is now labelled to be tank-mixed with Sencor/Lexone to improve broadleaf weed control. Use $1 / 4 \mathrm{lb}$ active/A Sencor/Lexone on medium textured soils, $3 / 8 \mathrm{lb}$ active/A Sencor/Lexone or. fine, heavy textured soil, and do not use this tank-mix on light soils. Vernam and Reward are also cleared for tank-mixing with A miben and Lasso for preplant incorporation. Check the label for specific rates of application.

Sencor/Lexone plus Prowi or Treflan	t to $\frac{1}{1}$ See rate of these	4L: $\frac{1}{2}$ to 1 pt DF: $1 / 3$ to $2 / 3 \mathrm{lb}$ marks for each an!ine herbicides.	15 or more	Controls most annual broadleaves and grasses, including johnsongrass seedlings. Will reduce infestation of jimsonweed, cocklebur, and giant ragweed. Will not control annual morningglory or eastern black nightshade. Do not plant soybeans more than 2 inches deep. Reduce Sencor/Lexone rate if soll pH is 7.5 or above, or if any atrazine carrvover. Incorporate 2 to 3 inches deep. See the herbicide labels for use rates on appropriate soils.
Sencor/Lexone plus	\ddagger to $\frac{1}{2}$	4L: $\frac{1}{\frac{1}{1}}$ to 1 pt DF: $1 / 3$ to $2 / 3 \mathrm{lb}$	15 or more	This sequential application (preplant incorporated followed by preemergence) is designed to help control some problem broadingf weeds such as: cocklebur, velvetleaf, jimsonweed, and common ragweed. Eastern black nightshade and annual morning-
Prowl or Treflan	See rate of these	marks for each miline herbicides.		glory are not controlled. Giant ragweed will be suppressed. Incorporate the tank-ri $\times 2$ to 3 inches deep. Apply the preemergence overlay of Sencor/Lexone after soybeans are planted, but
Followed by a preemergence overlay of Sencor/Lexone	1/8 to 1/2	4L: 1 to 1 pt DF: $1 / 6$ to $2 / 3 \mathrm{lb}$		before they are up. Do not use on solls with a pH of 7.5 or above, light soils with less than 1% organic matter, or if any atrazıne carryover. Do not plant soybeans more than 2 inches deep. See the herbicide labels for use rates on appropriate solls.

SHALLOW PREPLANT INCORPORATED

The following treatments should be incorporated 1 to 2 inches deep into the soll. Deeper incorporation will result in poor weed control. With proper equipment and adequate soll preparation, this shallow incorporation can usually be done with one pass. A disk usually will not provide ad yate incorporation. Field cultivators with leveling devices such as spike-tooth harrows (with 3 to 5 rows of teeth) or rolling baskets, cultimulchers, and power driven equipment will provide adequate one-pass, shallon incorporation. Field cultivators and cultimulchers should be set to cut 3 to 4 inches into the soil and operated at 5 to 7 mph. Power driven equipment should be set to cut 2 inches into the soil and operated at 4 to 5 mph .

Lesso - or - Dual - or - Prowl	$2 \frac{1}{2}$ to 4	5 tc 8 pt

[^1]
Herbicide Recommendations for Soybeans (contınued)

PREEMERGENCE

Herbicides sprayed on the soil surface are dependent on rainfall to move them into the soll where they can control weeds. One-quarter to onehalf inch of rain within seven davs of herbicide application is enough to move most herbicides into the soil. If rainfall does not occur within seven days, the field should be rotary hoed or cultivated to physically move the herbicides into the soil and remove any weeds that may be present.

A miben	$2 \nmid$ to 2.7	2L: 10 to 12 pt
	DS: 3 to 3.6 lb	

Controls many annual broadieaves and grasses. Fair control of eastern black nightshade and velvetleaf. Cocklebur, jimsonweed, giant ragweed, and annual morningglory usually are not controlled. To improve control of several broadleaf weeds, Amiben (1.8 lb active/A) can be tank-mixed with Loroz/Linex ($\$$ to 1 lb active/A) or Sencor/hexone (\ddagger to $\frac{1}{2} \mathrm{lb}$ active/A). See herbicide labels for use rates on appropriate soils. A miben 10G grar.دles are available. Amiben may be applied up to the second trifoliate leaf stage of soybeans. However, any weeds present at the time of application should be removed with a rotary hoe or shallow cultivation.

Amiben	1.8 to 2.7	2L: 8 to 12 pt DS: 2.4 to 3.6 lb
plus		
Lasso or	2 to 3	4 to 6 pt
Dual or	2 to 21	2 to 21 pt
Prowl	3/4 to 1t	1t to 2ipt

Controls most annual grasses and several broadleaves. Use Lasso or Dual with A miben to control eastern black nightshade. Fair control of velvetleaf. Cocklebur, jimsonweed, giant ragweed, and annual morning glory usually are not controlled. With adequate rainfall, fair to good control of yellow nutsedge with Lasso or Dual and seeding johnsongrass with Prowl may be provided. See herbicide labels for use rates on appropriate soils.

Herbicide Recommendiations for Soybeans (contınued)

Herbicide	Active Ingredient (lb/A)	Formulated Product per Acre	Water Overall (gal/A)

POSTEMERGENCE - (continued)				
Sencor/Lexone plus	1 $105 / 8$	4L: $\frac{1}{2}$ to $1 \frac{1}{4} \mathrm{pt}$ DF: $1 / 3$ to $5 / 6 \mathrm{lb}$	15 or more	Controls most annual broadleaves and grasses. Will reduce infestation of 11 mson weed, cocklebur, and giant ragweed. Will not control annual morningglorv. Use the higher ratec of Lasso or Dual to control eastern black nightshade. With adequate rainfall, fair to good control of yellow nutsedge with
Lasso or	2 to 3	4 to 6 pt		Lasso or Dual and seedling johnsongrass with Prowl mav be provided. Sencor/Lexone will cause occasional sobbean injurv
Dual or Prow 1	$\begin{aligned} & 2 \text { to } 2^{\frac{1}{2}} \\ & 3 / 4 \text { to } 14 \end{aligned}$	2 to $2 \frac{1}{2} \mathrm{pt}$ $1 \frac{1}{2}$ to $2 \frac{1}{2} \mathrm{pt}$		aíter emergence. Plant sovbeans at least $1 \frac{1}{\frac{1}{2}}$ inches deep to reduce injury hazard. Reduce Sencor/Lexone rate if soil pH is 7.5 or above, or if any atrazine carryover. See herbicide labels for use ratec on appropriate soils.
Sencor/Lexone plus	$\frac{1}{4}$ to 3/8	4L: $\frac{1}{2}$ to $3 / 4 \mathrm{pt}$ DF: $1 / 3$ to $2 / 3 \mathrm{lb}$	15 or more	Controls most annual grasses and broadleaves, including eastern black nightshade. Will reduce infestation of jimsonweed, cocklebur, and giant ragweed. Will not control annual morn-
Lasso or	2 to 3	4 to 6 pt		ingglory. With adequate rainfall, fair to good vellow nutsedge control may be provided. Use $3 / 8$ ib active/A of Sencor
Dual	2 to 2 $\frac{1}{2}$	2 to $2 \frac{1}{2} \mathrm{pt}$		Lexone on heavy solls, and $\frac{1}{4} \mathrm{lb}$ active/A Sencor/Lexone on
plus				light soils. This three-way combination provides greater crop safety, better herbicide suitability on variable soil tvpes, and
A miben	1.8	2L: 8 pt DS: 2.4 lb		more consistent and broader spectrum weed control than the use of just any two of these herbicides.
Lorox/Linex plus	$\frac{1}{2}$ to 1	50W: 1 to 2 lb 4L: 1 to 2 pt	15 or more	Controls most annual broadleaves and grasses. Fair velvetleaf control. Jims nnweed, cocklebur, giant ragweed, and annual morningglory usually are not controlled. Use Lasso or Dual with Lorox/Linex to control
Lasso or	2 to 3	4 to 6 pt		eastern black mightshade. With adequate rainfall, fair to good control of
Dual or	2 to 2t ${ }^{\frac{1}{2}}$	2 to $2 \frac{1}{2} \mathrm{pt}$		yellow nutsedge with Lasso or Dual and seeding johnsongrass with Prowl
Prow!	$3 / 4$ to 1 \%	$1 \frac{1}{2}$ to $2 \frac{1}{2} \mathrm{pt}$		may be provided. Lorox/Linex will cause occasional soybean injury after emergence. Plant soybeans at least $1 \frac{1}{2}$, hes deep to reduce injury hazard. See herbicide labels for use rates on appropriate soils.

Delayed Preemergence

Dyanap plus	41	12 pt	15 or more
Lasso or Dual	$2 \text { to } 3$	4 to 6 pt	

Apply when the first soybean plants begin to break through the soll to before the true leaves open. Do not apply beyond this stage as severe injury mav occur. Controls most annual grasses and broadleaves, including eastern black nightshade. Fair to good control of jımsonweed cosklebur, giant ragweed, and annual morningglory. Velvetleaf usually is not controlled. See herbicide labels for use rates on appropriate soils.

To ottain the best results with postemergence herbicides, the applications have to be made timely (proper size weeds) and when weeds are actively growing. In most situations, small weeds (less than 4 inches tall) are most easily controlled. Walk your fields weekly at least until the soybean canopy closes so weed problams that may develop can be controlled with timelv postemergence applications. If weeds are under drought-stress, efficacy of all postemergence herbicides will be reduced. Under these conditions, wait untıl there has been adequate rainfall for weeds to be actively growing before making herbicide applications.

Basagran plus Oil Concentrate	$3 / 4$ to 1 2 pt	11 to 2 pt 2 pt	? 0 to 40	Controls several annual broadleaves, including cocklebur, giant ragweed, jımsonweed, and velvetleaf. Also provides good control of Canada thistle ind yellow nutsedge. Poor control of annual morningglory, eastern tlack nightshade, and pigwced. Most effective when applied to annual broadleaves that are 2 to 6 inches tall (21 to 28 days after planting). See herbicide label for use rate and maximum weed height. For hard to control weeds, such as Canada thistle or yellow nutsedge, a split application ($3 / 4$ plus $3 / 4 \mathrm{lb}$ active/A) provides better control than a single application. Apply when thistles or nutsedge are 6 to 8 inches tali and a second application 7 to 10 days later. Use 40 to 60 psi.
Basagran plus Butoxone or Butyrac 200	$\begin{aligned} & 1 \\ & .03 \\ & .03 \end{aligned}$	$\begin{aligned} & 2 \mathrm{pt} \\ & 2 \mathrm{oz} \\ & 2 \mathrm{oz} \end{aligned}$	20 to 40	Controls annual morningglory in addition to weeds listed on Basagran label. Will also provide more consistart contrcl of maxımum size weeds on Basagran label. Applv befure morningglory vines are 10 inches long.

	Active	Formulated	Water	
Ingredient	Product	Overall	Remiside	(lb/A)

POSTEMERGENCE - (continued)

Blazer plus Surfactant	$\frac{1}{2}$	2 pt	20 to 40	Controls several annual broadleaves, including giant ragweed, jımsonweed, annual morningglory, eastern black nightshade, and pigweed. May be weak on cocklebur. Poor control of velvetleaf, lambsquarter, and yellow nutsedge. Most effective when applied to annual broadleaves that are 2 to 6 inches tall (21 to 28 days after planting). Will also burn back bindweeds, other perennial vines, and Canada thistle and retard their growth. Apply when vines are 12 to 18 inches long or thistles are 6 to 8 inches tall. Underground roots will not be killed. Provides good control of escaped annual grasses, such as foxtails, fall panicum, and seedling johnsongras,. For best results, add a non-ionic surfactant and apply when grasses are 2 to 3 inches tall. See herbicide label for amount of surfactant to add to Blazer. Temporary leaf burn will occur after application. Soybeans rapidly outgrow this injury. Use 40 to 60 psi . The liquid fertilizers $10-34-0$ and 28-0-0 may be used as adjuvants with Blazer and Blazer combinations under special situations. See the Blazer label for the latest use directions of these fertilizer solutions.
Blazer plus	$\frac{1}{2}$	2 pt	20 to 40	Better control, than Blazer alone, of cocklebur, a nutal morningglory, common ragweed, jimsonweed, and pigweed when weed size exceeds that specified on the Blazer label. Apply before morning-
Butoxone or	. 03	2 oz		glory vines are 12 inches long, or other susceptible weeds are no
Butyrac 200	. 03	$20 z$		more than 12 inches tall. Do not use surfactant or crop oil with th's mixture. Soybeans should have at least 5 fully expanded trifolsate leaves when this application is made.

Basagran plus	3/4	$1 \frac{1}{2} \mathrm{pt}$	20 to 40	For use when Basagran flone or Blazer alone will not contro all weeds that are present. If majority of the weeds in field are susceptible to Basagran, and in particular velvet
Blazer - or -	t	1 pt		and yellow nutsedge, use $3 / 4 \mathrm{lb}$ active/A Basagran plus $\$ \mathrm{lb}$ active Blazer. For best velvetleaf or nutsedge control add 1 to $2 \mathrm{pt} / \mathrm{A}$ of oll concentrate to the tank-mix. If the ma-
Blazer plus	3/8	12 pt	201040	jority of weeds in the field are susceptible to Blazer, and in particular annual morningglory, pigweed, eastern black nightshade and escaped annual grasses, use $3 / 8 \mathrm{lb}$ active/A or
Basagran	$\frac{1}{2}$	1 pt		Blazer and $\frac{1}{2} 10$ active/A Basagran. For best control of escaped annual grasses, add $1 \mathrm{pt} / \mathrm{A}$ of oil concentrate or surfactant to the tank-mix. The use of oll concentrate or surfactant in these tank-mixes usually enhances foliar leaf burn. Soybeans rapidly outgrow this injury. Use 40 to 60 psi.

Dyanap $\quad 1 \frac{1}{2}$ to $3 \mathrm{lb} \quad 4$ to $8 \mathrm{pt} \quad 8$ to

Apply after soybeans have at least 2 trifoliate leaves. Will control several annual broadleaf weeds including jimsonweed, cocklebur, giant ragweed, annual morningglory, and small eastern black mightshade. Will provide fair control of bindweeds and Canada thistle. Use $4 \mathrm{pt} / \mathrm{A}$ of Dyanap if weeds are 1 to 3 inches tall and $8 \mathrm{pt} / \mathrm{A}$ if weeds are 3 to 6 inches tall. Nightshade should be less than 3 inches tall for best results. Velvetleaf usually is not controlled. Temporary leaf burn will occur after application. Soybeans will outgrow this injury in 1 to 2 weeks. To keep injury to a minimum, use only 8 to 10 gal lons of water per acre, 40 to 60 psi, and position spray boom 18 to 36 inches above the top of the wead or soybean canopy. The spray should be a fine mis of fog for maximum weed control and mimmum crop injury. Do not apply when soybeans are wet as severe injury will occur. Do not use a surfactant or oil with Dyanap. For har to control weeds, such as jimsonweed, cocklebur, giant ragweed, and morningglory, a split application (lit plus it ib artive/A) may be applied. Apply the second application if regrowth or new growth occurs--usually 10 to 14 days after the first application.

Dyanap
$1 \frac{1}{2}$ to 3
4 to 8 pt
8 to 10
Provides more consistent control of weeds on Dyanap labe than Dvanap alone. Observe application precautions for Dyanap; otherwise severe injury to soybeans may occur.
plus
Butoxone or Butyrac 200

Herbicide Recommendations for Soybeans (continued)

Herbicide	Active Ingredient (lb/A)	Formulated Product per Acre	Water Overall (gal/A)	Remarks
POSTEMERGENCE - (continued)				
Amiben plus Butoxone Butvrac 200	$2: 103$.03	L: 10 to 12 pts $75 \mathrm{LS}: 3.0$ to 3.6 bbs $2 \mathbf{o z}$	10 to 20	When applied postemergence as a tank mixture, Amben and Butyrac 200/Butoxone will control or suppress pigweed, velvetleat, cocklebur and smartweed. Also several other broadleaf species such as giant ragweed and jımsonweed will be affected. This mixture will have no effect on the grasses. Apply when soybeans have 2 to 4 trifoliate leaves tut before the needs are more than 4 inches tall. Some temporary twisting, curling or malformation of sovbean leaves and stems will occur. Under heavv weed piessure or on larger weeds add 1 pint/A of a crop oll concentrate. This mav cause more soybean injury.
```Hoelon plus Oll Concentrate```	2 pt	$29 / 3 \mathrm{pt}$ 2 pt	20 to 40	Controls most annual grasses and volunteer corn. Will not control seedling johnsongrass or shattercane. Apply to annual grasses less than 4 inches tall, and to volunteer corn less than 12 inches tall. Do not tank-mix Hoelon with Basagran, Blazer, or Dyanap as decreased grass control will occur. Delay 7 days between Basagran, Blazer, or Dyanap use and Hoelon application. Use 40 to 60 psi.
Fusilade 2000 plus	. 1 to . 2	$3 / 4$ to $1^{\frac{1}{2}} \mathrm{pt}$	5 to 40	Controls all annual grasses including seedling johnsongrass, shattercane, and volunteer corn. Will also control wirestem muhly.
Oil Concentrate --or--	2 pt	2 pt		Apply when annual grasses are 2 to 8 inches tall, and to volunteer corn less than 10 to 20 inches tall. See labels for these materials for use rates and stage of growth for the various grass species.
Poast plus Oil Concentrate	. 20	1 pt 2 pt	5 to 20	Use 40 to 60 psi. In most cases when Fusilade or Poast are tankmixed with Basagran and/or Blazen some reduction of grass control will result. A tank-mix should be used only when the broadleaf and grass weeds are at the optimum stage of development for best kill. Otherwise, use separate applications. In separate applications when Poast or Fusilade are applied first wait at least 2 to 3 days before applyıng Basagran and/or Blazer. If Basagran is applied first, wait 2 to 3 days before applying Poast or Fusilade; however, If Blazer or a combination of Blazer und Basagran are applied first, wait at least 7 days before applying Poast or Fusilade.
Fusilade 2000 plus	. $2+.145$	$1 \pm+1 \mathrm{pt}$	5 to 40	Controls perennial grasses such as rhizome johnsongrass and quackgrass. Apply the first application when johnsongrass is 12
Oil Concentrate -- or --	$2 \mathrm{pt}+2 \mathrm{pt}$	$2 \mathrm{pt}+2 \mathrm{pt}$		to 15 inches tall, and quackgrass and wirestem muhly is 6 to 8 inches tall. Wait 14 to 21 days to make the second application. For johnsongrass, if regrowth occurs from the base of dead plants or if new growth occurs, the second application should be made.
Poast plus	$.3+.2$	$1 \frac{1}{2} \mathrm{pt}+1 \mathrm{pt}$	5 to 20	If a soybean canopy is well developed 21 days after the first application, a second treat ment may not be needed. An alternative approach to control rhizome johnsongrass with Fusilade is to use
Oil Concentrate	$2 \mathrm{pt}+2 \mathrm{pt}$	$2 \mathrm{pt}+2 \mathrm{pt}$		a planned split application (1 pt/A +1 pt/A). For quackgrass, the second application must be applied for best results. These treatments will usually eliminate all rhizime johnsongrass. In following seasons, be certain to use herbicides that have excellent activity on seedling johnsongrass. With quackgrass, these treatments usually eliminate the competition completely during the season. However, only 60 to $70 \%$ of rhizome kill will usually be obtained, and two seasons are required for complete rhizome eradication. Do not use Basagran or Blazer with Fusilade or Poast when controllıng perennial grasses such as quackgrass and rhizome johnsongrass. See remarks above when applying sequentıally with Basagran or Blazer. Use 40 to 60 psi .
Roundup   When used in a Recirculating Sprayer or Wick Applicator.	See label for amount of Roundup and water to use on various weed species.			Will clean up tall growing weeds, including johnsongrass, volunteer corn, shattercane, cocklebur, and giant ragweed. Apply when weeds are at least 6 inches taller than soybcans. For heavy infestations, a second application in the opposite direction may be needed for best results with wick applicators. Do not allow any direct contact with soybeans or other desirable plants as they may also be killed.


Herbic.de	Active   In $x_{b}$ redicnt   ( $1 \mathrm{~b} / \mathrm{A}$ )	Formulated Product per Acre	Water   Oversil   ( $\mathrm{c}, \mathrm{a} / \mathrm{A}$ )	Remarks

POSTEMERGENCE - (continued)

Rescue plue	$1 \frac{1}{2} / .05$	6 pt	10 to 20	Rescue is a prepackage-mix of Alanap-i, anc 2,4-DB amine. This treatment will reduce weed infestainon and make harvest easier, and salvage some soybean yield. it is not intended to
Surfac nt				be used as a primary weed control program. It is intended to help clean up weed control fallures. Apply Rescue after soybeans are 18 inches tall. This treatment will control or suppress cocklebur, giant ragweed, and volunteer sunflower. Also shows some activity on pigweed, lambsquarter, jumsonweed, common ragweed, and annual morningglory. Has no activity on grasses. Use 40 to 50 psi .

## DIRECTED POSTEMERGENCE

Sencor/Lexone plus	\$ to $\frac{1}{2}$	4I: $1 / 2$ to 1 pt DF: $1 / 3$ to $2 / 3 \mathrm{lb}$	10 to 40	Use as a directed postemergence application only. Por use as a follow-up treatment to soil applied herbicides to control burcucumber, annual morningglory, other escaped weeds such as jimsonweed, cocklebur, giant ragweed, and annual grasses, and to burn off
Butoxone or	. 2	13 oz		perennial vines. Sencor/Lexone will provide better control of
Butyrac 200 plus	. 2	$1 ? \mathrm{oz}$		burcucumber. Sencor/Lexone will also provide better resiđual control of cocklebur, jimsonweed and giant ragweed. Use Lorox/ linex to control eastern black nightshade. Apply when soybeans ar
Surfactant or	$\frac{1}{2} \%$	1\%		a minimum of 8 inches tall, and direct the spray to the bottom 3
Oil Concentrate   -- or --	2 pt	2 pt		inches of the soybean stem. Do not ellow spray to contact the growing terminals. Upright growing weeds should be less than 4 inches tall. Vines should be, prayed before they start climbing on
Lorox/Linex	* to $\frac{1}{2}$	50W: $\frac{1}{}$ to 1 lb 4L: $\frac{1}{2}$ to 1 pt	10 to 40	the soybeans. Perennial vines will be burnt back and their vigor reduced, but underground roots will not be killed. Do not use when symptoms of Phytopthora root rot are present as severe injury may
plus				occur. In Ohio Sencor/Lexone has a 24 C clearance for this treat-
Butoxor. or	. 2	13 oz		ment; therefore a user should secure a 24C label from the
Butyrac 200 plus	. 2	13 oz		supplier.
Surfactant or	\$\%	$\frac{1}{2} \%$		
Oil Concentrate	2 pt	2 pt		

## NARROW ROW SOYBEANS

Any . the soil applied herbicide programs previously discussed can be used in narrow row soybeans, and they will provide adequate control of grasses and small seeded broadleaf weeds, such as pigweed, lambsquarter, common ragweed, smartweed, and eastern black nightshade. However, there are several large seeded broadleaf weeds such as jimsonweed, cocklebur, giant ragweed, annual morningglory, and velvetleaf that al not adequately controlled with sull applied herbicides. The use of postemergence broadleaf herbicides is often needed to control these weeds. The following herbicide program is designed to control these weeds. This program will only work in narrow rows ( 2 C meh rows or less). It can also be used to control small seeded broadleaf weeds in soybeans.

Preplant Incorpor .te
$\left.\begin{array}{llll}\text { Prowl or } & 3 / 4 \text { to } 1^{\frac{1}{2}} & 1 \frac{1}{2} \text { to } 3 \mathrm{pt} & 15 \text { or more } \\ \text { Treflan } & 1^{\frac{1}{2}} \text { to } 1^{\frac{1}{2}} & 1 \text { to } 2 \frac{1}{2} \mathrm{pt}\end{array}\right)$

Followed By A
Postemergence
Application of

Basagran   plus   Oil Concentrate	1	2 pt	2 pt
--or--	2 pt	20 to 40	
Blazer   -or--	$\frac{1}{2}$	2 pt	20 to 40
Dyanap	$1 \frac{1}{2}$ to 3	4 to 6 pt	8 to 10

1立 to 3

See previous remarks for the use of all these herbicides. Incorporate Prowl, Treflan, Lasso, or Dual before planting. Use Prowl or Treflan if yellow nutsedge or eastern black nightshade are not present in the field. If these two weeds are present, Lasso ro Dual should be used. Apply Basagran, Blazer, or Dyanap 21 to 28 days after plantıng. ( 28 days for plantings made in late April or early May, and 21 days for plantings made after May 7). The postemergence herbicide user depends on the weeds present. These materials can be applied up to 4 inch tall weeds. Add $2 \mathrm{oz} / \mathrm{A}$ of Butoxone or Butyrac 200 to Basagran, Blazer, or Dyanap as the weeds appronch or slightly exceed the maximum control size as listed on the herbicide labels. Do not spot treat the field if weeds - not appear to be present. Be certain to spray the entire field. This program not only provides control of these large seeded broadleaf weeds; but also eliminates possible injury from soil applied broadleaf herbicides, and broadleaf weed control problems in fields with various soil types. Poast or Fusilade could be used if perennial grasses are present or if sufficient annual grasses escaped the earlier treatment to merit the cost of these postemergence grass materials. Gramoxone plus Surfactant $\begin{array}{ll}\mathbf{k} \\ \mathbf{k} & 1 \mathrm{pt} \\ 1 \mathrm{pt}\end{array}$ $\begin{array}{ll}\mathbf{k} \\ \mathbf{k} & 1 \mathrm{pt} \\ 1 \mathrm{pt}\end{array}$

15 or more $\begin{array}{ll}1 & 1 \mathrm{pt} \\ 1 & \end{array}$

Controls already emerged weeds and most annual broadleaves grasses. Apply immediately after planting. Do not apply soybeans are up. Increase Lorox/Linex rate to $1 \nmid \mathrm{lb}$ activa/A sfilabbove $3 \%$ organic matter. Decrease Sencor/Lexone rate C.

Herbicide Recommendations for Soybeans (continued)

	Active			
	Ingredient	Formulated	Product	Water
(lb/A)	per Acre	Overall		
Herbicide		(gaviA)	Remarke	

## DOUBLE-CROP REDUCED OR NO-TILL SOYBEANS - (continued)

plus		
Lorox/Linex	1	$\begin{aligned} & \text { 50W: } 2 \mathrm{lb} \\ & \text { 4L: } 2 \mathrm{pt} \end{aligned}$
--or--		
Paraquat or	$\downarrow$	
Gramoxone plus	1	
Surfactant plus		
Sencor/Lexone	$\frac{1}{2}$	$\begin{aligned} & \text { 4L: } 1 \mathrm{pt} \\ & \text { DF: } 2 / 3 \mathrm{lb} \end{aligned}$

t lbactive/A on soils below 2\% organic matter. Reduce Sencor/ Lexone rate or use Lorox/Linex if soll pH is above 7.5 or if any atrazine carryover. If grasses are anticipated as a major weed problem or if soybeans are planted in rows wider than 15 inches, add Lasso ( 2 to $2 \frac{1 \mathrm{lb}}{} \mathrm{active} / \mathrm{A}$ ), Dual' to $2 \ddagger \mathrm{lb}$ active/A), Prowl ( $3 / 4$ to $1 \nmid \mathrm{lb}$ active/A), or Surflan ( $3 /$. . $v 1 \nmid \mathrm{lb}$ active $/ A$ ) to the spray mixture. Surflan will provide fair to good control to volunteer wheat. Bronco at 8 to $10 \mathrm{pt} / \mathrm{A}$ substıtuted for Paraquat/ Gramoxone plus Lasso, will coi trol annual grasses and suppress perennials such as quackgrass, johnsongrass and Canada thistle. Bronco is a prepackaged mix of Roundup and Lasso. Use postemergence herbicides (see section in conventional tillage soybeans) to deal with other weed problems as they develop.

## FULL SEASON REDUCED OR NO-TILL SOYBEANS

A void making a meadow harvest and planting soybeans into untilled stubble as any alfalfa or clover that may regrow with the soybeans cannot be contiolled. Also, corn will better utilize any soil mitrogen that will become available after kiling off the meadow. Avoid sites with extensive infestations of perennial broadleaf weeds, as herbicides are not available to control most of these weeds, especially after the crop emerges. Controlling all weeds that are present at planting is essential in no-till soybean production. Any herbicide program that is used must be able to control all weeds that are present at planting.

Surflan (Early application)		2 to 3 pts		Surflan can be applied in the fall or early spring directly over undisturbed stubble from previous crops. It will control annual grasses and several broadleaf species. Application can begin anytime after harvest in the fall up to spring seeding; however, in the spring Surflan should be applied before the annual broadleaf and grass weeds begin to germinate. The soil should not be tilled between the early Surflan application and soybean planting. Use follow-up herbicide application such as Sencor/Lexone or Lorox/ Linex at planting to control and provide residual activity on broadleaf weeds. If broadleaf weeds are present, apply 2,4-D as suggested above. Caution--Do not apply Surflan to frozen or snow covered ground.
Paraquat or Gramoxone plus Surfactant plus	$\begin{aligned} & 1 \text { to } \frac{1}{2} \\ & 1 \\ & t \text { to } \end{aligned}$	$\begin{aligned} & 1 \text { to } 2 \mathrm{pt} \\ & 1 \text { to } 2 \mathrm{pt} \end{aligned}$	20 or more	Controls already emerged annual weeds and most annual broadleaves and grasses. Apply before or immediately after planting.    or Gramoxone if there is heavy weed growth or a cover crop present at planting. A split application of half the material applied 7 days apart will often provide better burndown of heavy weed growth or a cover crop. If yellow nutsedge or eastern black night-
Sencor/Lexone plus	$\ddagger \text { to } 5 / 8$	4L: $\ddagger$ to $1 才 \mathrm{pt}$ DF: $1 / 3$ to $5 / 6 \mathrm{lb}$		shade is present, use Lasso or Dual at 3 lb active/A. Prowl or Surflan will have fair to good activity on seedling johnsongrass. Reduce Sencor/Lexone rate or substitute Loroz/Linex ( $\$$ to 1 lb active/A) if soil pH is 7.5 or above or if any atrazine carryover.
Lasso or Dual or Prowl or Surflan	$\begin{aligned} & 2 \text { to } 3 \\ & 2 \text { to } 2 \frac{1}{4} \\ & 3 / 4 \text { to } 1 \frac{1}{k} \\ & 3 / 4 \text { to } 1 \frac{1}{2} \end{aligned}$	```4 to 6 pt 2 to 2\frac{1}{2}}\textrm{pt 1% to 2% pt 75W: 1 to 1 2/3 lb 4AS: 1& to 2& pt```		Plant soybeans at least $1 \$$ inches deep. To control or suppress perennials such as quackgrass, johnsongrass, Canada thistle and clover, substitute $1 \frac{1}{\frac{1}{2}}$ to $2 \mathrm{qt} / \mathrm{A}$ of Roundup for the Paraquat/ Gramoxone. Use postemergence herbicides (see section in conventional tillage soppeans) to deal with other weed problems as they develop.
Bronco plus Surfactant   plus   Sencor/Lexone	3.6 to 4.5 \$ to $5 / 8$	8 to 10 pt   $2 \mathrm{qts} / 100 \mathrm{gal}$ spray solution   4L: $\ddagger$ to $1 \neq \mathrm{pt}$   DF: $1 / 3$ to $5 / 6 \mathrm{lb}$	10 to 20	Controls already emerged annual weeds and most annual broadleaves and grasses. Will suppress perennials that are present when Bronco is applied. Do not apply after soybeans are up. Bronco is a prepackage-mix of Roundup and Lasso ( 1 to 2.6 ratio). To improve control of perennial weeds, particularly grasses such as quackgrass, apply Bronco at $10 \mathrm{pt} / \mathrm{A}$ or spike the Bronco tank-mix with Roundup ( $11 / 3 \mathrm{pt} / \mathrm{A}$ ). If yellow nutsedge or eastern black nightshade is a problem, apply Bronco rate at 10 pt/A or spike the Bronco tank-mix with Lamo (1 pt/A). Reduce Sencor/Lexone rate wr substitute Loror/Linex ( $\$$ to 1 lb active/ A ) if soil pH is $\mathbf{7 . 5}$ or above or if any atrazine carryover. Plant soybeans at least $1 \frac{1}{2}$ inches deep. Use postemergence herbicides (see section in conventional tillage soybeans) to deal with other weed problems as they develop.
Roundup	1\% to 2	4 to 6 pt	20 or more	Use with same residual herbicides listed with Paraquat or Gramoxone when emerged perennial weeds, such as quackgrass, wirestem muhly, Canada thistle, perennial vines, etc. are present at the time of planting.
		$i$		

## SMALL GRAINS

## Fertilizer Recommendations

Nitrogen - Sprıng nitrogen top dress for wheat and barley should be applied between March 15 and April 15 depending on the location in Ohio If topdressed too early and a feeeze occurs after dormancy is broken, stand inay be reduced.

Recommended Nitrogen for Small Grains (Ib N/A)

	Crop   Wheat Barley Oats	Yield Goal (Bu/A)		
		50	$70^{1}$	$90^{1}$
		35	90	115
		100	130	160
Spring Application	(Wheat)	$40^{2}$	$75^{2}$	$110^{2}$
Spring Application	(Barley)	$55^{2}$	$95^{2}$	1352
Spring Application	(Oats)	$60^{2}$	$90^{2}$	$125^{2}$
${ }^{1}$ Use short, stiff-strawed varieties.				
${ }^{2}$ Reduce nitrogen r	30 lbs. p	on	olor	

Examples of Phosphorus (expressed as $\mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{A}$ ) Recommerided for Small Grains (graın removal only)

Soil Test value	Crop	Yield Goals ( $\mathrm{Bu} / \mathrm{A}$ )		
	Wheat	50	70	90
	Oats	100	130	160
$16 \mathrm{P} / \mathrm{A}$		Annual Recommendation		
10		105	115	130
20		90	100	115
30		75	85	100
40		65	75	90
50		50	60	75
60-90		35	45	60
100		20	30	45

Underlined numbers are the approximate amounts of crop removal

Examples of Potassium (expressed as $\mathrm{K}_{2} \mathrm{O} / \mathrm{A}$ ) Recommended for Small Grain (grain removal only)										
Soil Test Value	$\begin{aligned} & \text { Crop } \\ & \hline \begin{array}{l} \text { Wheat } \\ \text { Oats } \end{array} \end{aligned}$	Yield Goals (Bu/A)								
		$\begin{array}{r} 50 \\ 100 \end{array}$			$\begin{array}{r} 70 \\ 130 \end{array}$			90		
	C.E.C.				C.E.C.			C.E.C.		
		10	20	30	10	20	30	10	20	30
$16 \mathrm{~K} / \mathrm{A}$	Annus 1 Recommendation									
50		110	130	150	120	140	160	130	150	170
150		70	90	110	80	100	120	90	110	130
250		30	50	70	40	60	80	50	70	90
350		20	20	30	30	30	40	40	40	50
450		0	20	20	0	20	30	20	30	40
550		0	0	0	0	0	0	0	0	20

Underlined numbers are the approximate amounts of crop removal

[^2]
## FORAGES

## Conventional Seedings with a Small Grain Crop

Make forage seedings in fall or spring sown small grains as early in the spring as practical to enhance seedıng success. Make all spring seedings of forage legumes and grasses in the March-April period in southern Ohio and during April in northern Ohio.

Early spring seedings of forages in winter graıns assist the forage seedlings to beome established before the grain begins rapid spring growth; however, competition from the winter grains is still serious.

Early Removal of the Small Grain as silage, pasture or hay decreases the period of competition to the forage seedings and increases the vigor of the forage stand. This is an excellent alternative for sloping fields where soil erosion may be a hazard. Harvest the small grain at the early heading to milk stage of development.

Summer (August) Seedings. Alfalfa, smooth bromegrass, orchard-grass and timothy are well adapted to August seeding. Successful seedings of tall fescue and red clover have been made in Ohio when seeded in early August When making summer seedings, a small grain crop is not used.

August seeding of forages has several advantages. It provides a second chance to establish a crop if spring seedings fail or if conditions prevent getting the seeding done in spring. It can follow the harvesting of a small grain, a means of double cropping, while keeping the soil protected with a crop.

Fxamples of Phosphorus (expressed as lb $\mathrm{P}_{2} \mathrm{O}$ 'A) and Potassium (expressed as lb $\mathrm{K}_{2} \mathrm{O} / \mathrm{A}$ ) Recommended for Seedings of Forage and/or Perennial Tall Grasses

Phosphorus		Potessium			
Soil Test Value (lb P/A)	Pertilizer Application ${ }^{1}$ $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	Soil Test Value   ( $1 \mathrm{~b} \mathrm{~K} / \mathrm{A}$ )	$\begin{gathered} \text { Pertilizer } \\ \text { Application }\left(\mathrm{K}_{2} \mathrm{O}\right)^{\mathbf{1}} \\ \text { C.E.C. } \end{gathered}$		
			10	20	30
			Annual Recommendation		
5	95	50	130	150	170
15	85	150	90	110	130
25	75	250	50	70	90
35	65	350	40	40	50
55	45	450	0	30	40
60-90	40	550	0	0	0
${ }^{1}$ For spring seeded alfalfa alone increase phosphorus resommendation by $40 \mathrm{lbs} \mathrm{P}_{2} 0_{5} / \mathrm{A}$ and potassium by $180 \mathrm{lbs} \mathrm{K}_{2} 0 / \mathrm{A}$.					
Examples of Nitrogen Recommended for Seedings of Forage Legumes and/or Perennial Tall Grasses					
Seeding		lb N/A			
Legumes		10			
Legume-Grass		20			
Groses		30			

## Forage Fertilizer Recommendations

Examples of Phosphorus (expressed as Ib $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{A}$ ) Recommended for Forage Legumes and/or Tall Grasses (including annual forages)

Soil Test Volue	Yield Goals (T/A)		
	4.0	6.0	8.0
lb P/A	Annual Recommendation ${ }^{1}$		
5	105	135	150
15	95	125	150
25	85	115	140
35	75	105	130
55	55	85	110
60-90	50	80	105

Underlined numbers are the approximate amounts of crop removal.

Examples of Potassium (expressed as lb $\mathrm{K}_{2} \mathrm{O} / \mathrm{A}$ )
Recommended for Forage Legumes and/or Tall Grasses (including annual forages)

Soil Test   Volue	Yield Goals (T/A)								
	4.0			6.0			8.0		
	C.E.C.			C.E.C.			C.E.C.		
	10	20	30	10	20	30	10	20	30
$\mathrm{lb} \mathrm{K} / \mathrm{A}$	Annual Recommendotion ${ }^{1}$								
50	330	350	370	450	470	490	570	590	610
150	290	310	330	410	430	450	530	550	570
250	250	270	290	370	390	410	490	510	530
350	240	240	250	360	360	370	480	480	490
450	210	230	240	330	350	360	450	470	480
550	170	190	210	290	310	330	410	430	450

Underlined numbers are the approximate amounts of crop removal

## Examples of Nitrogen fiecnmmended for Forage Legumes and/or Pet mrial Tall Grasses

Alfolfo, Red Clover ( $\%$ of Stand ${ }^{1}$ )	Yield Gaols (T/A)	
	3.5 or less	aver 3.5
	Annual Applicotion-lb $N / A^{2}$	
Mare than 40	0	0
20-40	75	125
Less than 20	125	175
${ }^{1}$ Assume grass occupies space nat occupied by legumes		
${ }^{2}$ Make split applic Liquid $N$ shauld faliage remaval	the early early spr	harvest. fallawing

## HARVEST MANAGEMENT

## Harvesting Effects on Alfalfa

	T./A. ${ }^{1}$	Crude Protain \%			
Alfalfa	58	19	16	16	20
$5 / 25,6 / 30,8 / 5,9 / 10$	5.8	17	14	18	
$6 / 1,7 / 16,8 / 30$					
Alfalfa - Orchardgrass	58	13	16	16	19
$5 / 25,6 / 30,8 / 5,9 / 10$	6.9	10	14	16	
$6 / 1,7 / 16,8 / 30$					

"Fiemish"-type alfalfa and late-maturing archardgrass.
1 12\% Moisture-Wooster, Ohio
Saurse R W. Van Keuren, "Ohia Dairy Day Report," 1977, p. $4 €$

## Recommended Harvest Dates - First-Cutting Legume - Grass Mixtures

Farage Mixture	CUTTING SChECULE A ${ }^{1}$			CUTTING SCHEDULE $\mathrm{B}^{2}$		
	Southern Ohio	Central Ohio	Northern Ohio	Southern Ohio	Central Ohio	Northern Ohio
Alfolfo-Comman Orchardgrase	May 15-20	May 18-23	May 23-28	May 20-25	May 25-30	June 1-5
Alfalfa-Bramegrass	May 20-25	May 23-28	May 28-June 5	May 28-June 5	June 1.5	June 5-15
Alfalfa-Timothy	May 20-25	May 23-28	May 28-June 5	May 28-June 7	June 1.10	June 5-15
Red Clover. Timothy	May 24-June 5	June 1-10	June 1.15	May 25-June 5	June 1-10	June 5-15
Birdsfoot Trafoil. Timathy	May 20-June 1	May 25-June 15	June 1-20	June 1-10	June 5-15	June 10-20

${ }^{1}$ CUTTING SCHEDULE A-Forage cut during these periods will be af high quality Dry matter yields will be lower than would be received fram tater harvests; however, yields af digestible dry matter per acre will equal or exceed thase fram later harvests.

Harvesting at these early dates may resulf in some lass af alfalfa stands. Stand reductians will be greater an first-year than an second-year meadows. The risk of lasing alfalfa stands can be reduced by maintaining soil fertility and lime at high levels. "Flemish" alfalfas are adapted to earlier harvest
${ }^{2}$ CUTTING SCHEDULE B-Harvesting at these dates will produce large quantities af medium quality farage Digestibility will be lowe: than fram earlier harvests

These dates may be fallowed In these situations: Far first-year hay an fields 3 remain in sod two ar mare years; for long-lay sods whare it is important to keep legume stands for several years; where soil pH and fertility lovels are less thon aptimum, where a late fall cutting may hove been taken, winter injured fields; narth facing slopes

[^3]
## SEEDING MIXTURES AND RATES

Legumes and Grasses	
Seeding	Lb/A

## Mirtures for Hay, Silage, or Rotational Grazed Pasture

A

Alfalfa seeded arone mav be more weedy, less winter hardy and may lodge more than alfalfa-grass mixtures. Mav be used on well drained, fertile, well managed sites.

Most forage seedings in Ohio are a grass-legume mixture. Seeding some fields to alfalfa-orchardgrass, others to alfalfa-bromegrass, and others to alfalfatimothy will permit spreading the first harvest over a period of two weeks without serious loss of quality.

Orchardgrass seeding rate may be reduced to $1-2$ pounds per acre where an alfalfa dominant mixture is desired.

Red clover is more tolerant than alfalfa to heavy shading by grain crops. These mixtures are recommended for seedings in wheat and other winter grains, and for use on fields where restricted soil drainage or low pH mav reduce stands and growth of alfalfa.

These mixtures should be used on fields which will not produce satisfactory stands and yields of alfalfa or short rotation sites. After the first harvest year, there usually will be little or no clover in the stand and the seeding should be treated as a pure stand of grase.

On some poorly drained soils of northeastern Ohio, birdsfoot trefoil produces higher yields than alfalfa. Where alfalfa does well, it yields 20 to 40 per cent more than birdsfoot trefoil. Upright-growing strains of birdsfoot trefoil, such as Viking, should be used for hay. In southern Ohio, birdsfoot trefoll stands are generally short-lived except where natural reseeding occurs.

## Mixtures for Long-lay Pastures

Add ladino white clover--1/2 to $1 \mathrm{lb} / \mathrm{A}-$-where a ladino-grass pasture is desired. There is some danger of bloat when cattle are grazing ladino whie clover-grass pastures. Ladino white clover in this mixture increases livestock acceptability of ta!l fescue.
10 lb . of tall fescue is sufficient for pasture establishment in most situations. 15 lb . may be advisable in potential areas of severe soil erosion and for notıllage seeding.

Kentucky bluegrass--1 to $2 \mathrm{lb} / \mathrm{A}-$-should be substituted for timothy where a birdsfoot trefoil-bluegrass sod is desired in the shortest possible time.

On fields which had good bluegrass sod prior to the start of the seedbed preparation, it is not necessary to sow a grass with birdsfoot trefoll. Bluegrass from the old sod will quickly re-establish to form a birdsfoot trefoil-bluegrass sod. Low-growing strains of birdsfoot trefoil, such as Empire, should be used for pasture. This pasture mix primarily adapted to Northern Ohio.

Reed canarygrass is recommended for use in areas too wet to support other forage grasses. Reed canarygrass will also produce high yields on well-drained sites. but it is less palatable than other species which can be grown.
Korean lespedeza broadcast over pastures in southern Ohio in which there is considerable bare ground will increase summer and fall production of such pastures.

May require 1-4 years to obtain a productive stand. Timothy or bluegrass may be added to the seeding.

[^4]
## PASTURE

## PASTURE CALENDAR GUIDE

This is only a guide to be used in forage progran. planning.
Grazing days for the year and by months is based on the anticipated yields and for the various indicated crops for one cow equivalent (one anmal unit). An animal unit is the equivalent of one cow ( 1000 pounds of animal) in feed consumption; one darry or beef cow, two heifers or two beef steers, five ewes, one horse, six sows.

An animal unit of pasture in any month is approximately the amount of pasture which a mature darry or beef anmal will eat in a month of grazing. It is considered to be 600 pounds of dry matter, containing 400 pounds of T.D.N.


Source: Ohio Agronomy Guide, p 75

## FERTILIZING BLUEGRASS PASTURE

Examples of Nitrogen Recommended

	Yield Goals (T/A)	
Time of Application	2.0 or less	Over 2.0
	Annual Application lb N/A	
Spring	40	60
Lote Summer (September 1)	40	60

Examples of Phosphorus (expressed as $\mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / f$.) and Potassium (expressed as ib $\mathrm{K}_{2} \mathrm{O} / \mathrm{A}$ ) Recomniended

Phosphorus		Potassium			
Soll Test Volve	Fertilizer Application	Soil Test	Fertilizer Applicotion C.E.C. ${ }^{1}$		
		Value	10	20	30
$\mathrm{lb} P / \mathrm{A}$		lb K/A Annual Appli			
5	60	50	95	105	115
15	40	150	75	85	95
25	20	200 ar Abave	0	0	0
30 or obave	0				

${ }^{1}$ Catian Exchange Capacity
When buildup is requested, buildup recammeridations far bluegrass are made to 30 for $P$ and 200 for $K$

UGGESTED RATES AND DATES OF SEEDING IMPORTANT OHIO CROPS

Crop	Pounds of Seed Pis Bushe I	Rate to Plant ( $\mathrm{lb} / \mathrm{A}$ )	DATE TO PLANT	
			In Northern Ohio	In Southern Ohio
Alfalfa	60	12	Mar. 10-Mav 15 or Aug. 1-Sept. 1	Mar. 1-Mav 1 or Aug. 1-Sept. 15
Barlev, Winter	48	96-120	Sept. 15-25	Sept. 15-Oct. 5
Birdsfoot Trefoil	60	6	Mar. 10-May 1	Mar. 1-Mav 1
Bromegrase	14	10	Aug. 1-Sept. 1 or March-April	Aug. 1-Sept. 15 Or March-April
Corn, dent	56	16-22	Apr 15-Mav 10	Apr. 10-May 10
Corn, pop	56	3-6	Apr. 25-May 10	Apr. 15-Mav 10
Clover, alsike	60	4-5	March-April or	March-April or
			August	August
Clover, Medium or mammoth red	60	8-10	$\begin{gathered} \text { March-April } \\ \text { or } \end{gathered}$	March-April or
			August	August
Clover. Iacino	60	1-2	March-April	March or August
Fearue, tall	10-30	$111-15$	March-April or	March-April or
Lespedeza. Korean	40-45	6-12	Not recommended	Feb. 15-Mar. 31
Oats, spring	32	64-80	March-April	Mar. 1-Apr. 15
Orchardgrass	14	6	$\begin{aligned} & \text { March-Apr. } 30 \\ & \text { or } \\ & \text { August } \end{aligned}$	March-Apri] or Auguat
Rve	56	112	Sept. 1-Oct. 15	Sept. 10-Oct. 20
Rvegrass	$\begin{array}{lc} \text { Soll Cover - } & 15-20 \\ \text { Forage - } & 5 \end{array}$		June 15-Aug. 15 or March-April	June 15-Oct. 1 or March-April
Sorghum, forage	50	12-15	Mav 10-30	Mav 5-30
Sorghum, grain	56	8-12	Mav 10-30	Mav 5-25
Sorghum-Sudangrass	40-50	35	Mav 15-June 15	Mav 5-June 15
Sorpeans	60	$\begin{aligned} & 8.5 \text { secds, fit } \end{aligned}$	Mav 1-20	Adr. $20 . \mathrm{Vav} 10$
Sudangrass	40	25	Mav 15-June 15	May 5-June 15
Sweetc lover	60	10-12	Mar. 15-Apr. 30	Mar. 15-Apr. 15
Timotiv	45	1.2 (fall)   or   4 (spring)	August-September or March-Aprıl	August-Oct. 15 or March-April
Wheat	60	75-105	Sept. 29-Cri. 15	Oct. 7-22

Source: Ohio Agronomy Guide, inside back cover

## UNIT II

## LIVESTOCK PRODUCTION DATA

A. In this unit, data will be provided for you touse with your students. These data will help them complete the livestock report and livestock budgets in the farm management problem. (Other sources of data can be used if you so desire.)
B. It is suggested that you make these data or comparable data available to your students in the vo ag department.
C. The sources of data for this unit include:

1. Excerpts from Lıvəstock Nutrition and Feeding (Ohıo Agrıcultural Educatıon Currıculum Materiz Is Senyice)

Nutrie רt Composition of Feed Stuffs - pages 123-130
Guidelines in Selecting Rations - pages 138-144
2. Excerpts irom Livestock Breeding (Ohio Agricultural Education Curriculum Materials Service)

Age of Puberty, Mating Capacity, and Recommended Breeding Load for Male Livestock pages 48, 53
Age When Heat Begins, and Duration of Heat - pages 61, 62
Duration of Gestation - page 90
3. Excerpt from The Farm Management Guide (Doane's Agricultural Service, Inc.)

Livestock Space Requirements - pages 147-148
4. Excerpts from Modern Livestock and Poultry Production (Delmar Publishers)

Animal Breeding - pages 98-99
Horses - Feeding, Management, Housing, and Tack - page 444
Poultry-Feeding, Management, Housing, and Equipment - pages 514-517, 521, 526-530

NUTRIENT COMPOSITION OF FEED STUFFS COMMONLY FED CATTLE AND SHEEP

Feedstuff	Dry Matter $\%$	Total (Crude) Protein $\%$	Digestible Protein \%	Crude Fiber \%	Total   Digestible Nutrients \%	Calcium \%	Phosphorus \%
Dry Roughage							
Alfalfa hay 1/10 bloom	90	17.5	12.8	23.0	53	1.61	. 27
Alfalfa hay 1/2 bloom	90	15.0	10.2	30.0	50	150	. 27
Alfalfa hay full bloom	90	13.0	93	32.0	47	1.13	. 20
Alfalfa hay 1/2 grass (avg.)	90	12.0	7.7	30.0	50	. 80	. 20
Alfalfa hay stemmy	90	12.0	8.2	36.0	46	1.07	. 20
Broomgrass hay (avg.)	90	10.4	5.3	31.0	49	. 42	. 20
Clover, red, (avg.)	88	12.0	7.2	27.0	52	1.28	. 20
Clover, red, leafy	88	13.5	9.2	23.0	53	1.47	. 20
Clover, red, stemmy	88	10.4	5.8	34.0	49	1.12	. 20
Clover and timothy (30-50\% clover)	88	8.6	4.7	30.0	50	1.70	. 23
Com stover	90	5.9	2.1	32.0	48	. 40	. 07
Misc. hay less than $30 \%$ legume	88	8.4	4.5	31.0	48	. 59	. 18
Oat, straw	90	4.1	1.3	36.0	45	. 24	. 09
Orchard grass hay	88	11.2	6.7	30.0	50	. 40	. 33
Timothy hay before bloom	89	9.7	6.1	28.0	54	. 60	. 20
Timothy hay mid-bloom	89	7.5	4.0	28.0	54	. 36	. 16
Timothy hay late bloom	89	5.3	21	31.0	42	. 20	. 15
Timothy hay tavg.)	$¢^{0} 0$	66	3.0	30.0	490	. 35	. 14
Silage							
Alfalfa, wilted	36.0	64	45	10.9	22.0	. 51	. 12
Com dough stage	29.0	2.3	12	6.3	190	. 07	. 06
Com milk stage	26.0	1.8	0.8	5.8	18.0	07	. 06
Corn with 10 lb . ureatton	30.0	4.3	2.6	6.3	22.0	. 10	. 06
Grass-legume mixturi	29.0	3.4	1.7	91	13.0	. 23	08
Oat	30.0	3.6	2.5	100	160	. 07	. 06

Source: Livestock Nutrition and Feeding, pp 123-126
(contınued)

Nutrient Composition of Feed Stuffs (contınued)

Feedstuff	$\begin{gathered} \text { Dry } \\ \text { Matter } \\ t / \% \end{gathered}$	Total (Crude) Protein \%	$\begin{aligned} & \text { Diges- } \\ & \text { tible } \\ & \text { Protein } \\ & \% \end{aligned}$	Fiber $\%$	Total Digestible Nutrients $\%$	$\underset{\%}{\text { Calcium }}$	Phos. phorus $\%$
Concentrates							
Beet molasses	77.0	84	4.4	0			
$\begin{gathered} \text { Brewers } \\ \text { grain (dried) } \end{gathered}$	92.4	25.9	20.7	14.0	610	. 16	03
Brewurs grain (wet)	237	5.7	4.2	4.0	16.1	07	12
Cane						07	12
	74.0	3.0	1.7	0	670	. 66	. 08
Corn and cob meal	86.0	7.4	5.4	9.0	73.2	00	. 22
Com and cob meal ( $30 \%$ moisture)	70.0	6.0	4.8	6.0			
$\begin{aligned} & \text { Com no. } 2 \\ & \text { shelled } \end{aligned}$	89.0	89	6.8	6.0	880	0 .02	0
Corn distillers ${ }^{\circ}$ grains (dned)	92.0	27.0	20.0	13.6	82.7	. 09	. 37
Com distillers grains with solubles	92.0	27.0	20.0	90	81.0	. 17	. 68
$\begin{gathered} \text { Com gluten } \\ \text { feed } \end{gathered}$	90.4	250	22.0	7.0	75.4	. 46	. 77
$\begin{gathered} \text { Corn gluten } \\ \text { meal } \end{gathered}$	90.7	42.9	36.5	4.0	80.0	16	. 40
Cottonseed meal solvent process	91.4	41.6	34.5	11.0	66.1	. 15	1.10
Linseed meal solvent process	90.9	35.1	29.5	9.0	71.0	. 40	. 83
Oats, ground	90.2	12.0	8.3	11.0	70.1	09	. 33
Oats, ground light weight	912	9.0	7.0	15.0	59.8	0	0
Oatmeal	908	16.1	14.5	3.0	91.4	07	. 46
Rye	895	12.6	10.0	3.0	76.5	10	. 33
Soybean meal (expeller process)	91.7	50.4	46.4	3.0	75	.27	.33 .63
Soybean meal (solvent process)	90.3	458	42.1	6.0	77.2	32	. 67
Soybean seeds	90.0	37.9	33.7	5.0	87.6	. 25	. 59
Wheal, soft red winter	90.0	11.1	9.2	2.2	80.0	. 04	. 29
Wheat bran	89.1	16.0	13.0	10.0	65.9	14	1.17
Wheat middlings	89.8	17.2	14.3	8.0	76.9	. 15	.91

Nutrient Composition of Feedstuffs (continued)

Feedstuff	Dry Matter $\%$	Total (Crude) Protein \%	Digestible Protein $\%$	Crude Fiber \%	Total Digestible Nutrients $\%$	$\begin{gathered} \text { Calcium } \\ 7 \end{gathered}$	Phosphorus \%
Wheat screenings (good grade)	90.4	139	10.0	4.0	68.7	44	. 39
Yeast, brewers' dried	93.4	44.6	38.4	30	72.4	. 13	143
Mineral Supplements							
Bone meal, Steamed						30.00	14.00
Dicalcium phosphate						22.00	18.00
$\begin{gathered} \hline \text { Defluonnated } \\ \text { rock } \\ \text { phosphate } \end{gathered}$						32.00	1800
High calcium Limestone, ground						38.00	. 02

## METABOLIZABLE ENERGY, VITAMIN, AND MINERAL CONTENT OF SWINE FEEDS



[^5]Metabolizable Energy, Vitamin, and Mineral Content of Swine Feeds (continued)

Feed	Metabolizable energy (k/cal per lb.)	$\underset{\%}{\text { Calcium }}$	Phosphorus $\%$	Vitamin A (IU/lb.)	Riboflavin (mg per lb.)	$\begin{gathered} \text { Niacin } \\ \text { (mg } \\ \text { per lb.) } \end{gathered}$	Pantothenic Acid (mg per lb.)	$\begin{gathered} \text { Choline } \\ \text { (mg } \\ \text { per lb.) } \end{gathered}$	Vitamin $B_{12}$
Tankage	931	5.94	3.17		1.10	17.8	1.10	985.9	
Whey (dneds	1.447	0.87	0.79		13.60	5.1	21.70	1100.0	
Grain byproducts brewers grains (dried)	775	0.27	9.50		0.70	19.7	3.90	721.4	
Corn gluten meal (41\% protein)		0.16	0.40		0.70	22.7	4.70	150.0	
Corn gluten feed		0.30	0.70		0.40	30.0	2.60	217.3	
Hominy feed		0.05	0.53		0.90		3.40	195.4	
Wheat bran	1,053	0.14	1.17		1.40	95.1	13.20	449.1	
Wheat middlings	1,339	0.08	0.52		0.70	23.9	6.20	363.6	

AVERAGE NUTRIENT COMPOSITION OF FEEDS COMMONLY USED IN HORSE RATIONS*

Feed	As Fed Basis					
	Digestible Energy (Mcal./lb.)	Protein (\%)	Digestible Protein (\%)	Calcium $\mathrm{gm} / \mathrm{l}$.	Phosphorus $\mathrm{gm} / \mathrm{lb}$.	$\begin{gathered} \text { Vitamin A } \\ \text { (thousands IU/lb.)** } \end{gathered}$
Oats	1.25	11.75	7.39	. 09	. 35	
Sheiled Corn	1.62	8.90	4.71	. 02		
Corn and Cob Meal	1.35	8.10	4.00	. 04	. 27	
Barley	1.48	11.57	7.29	. 08	. 42	
Wheat Bran	1.04	16.02	11.48	14	1.17	
Soybean Oil Meal	1.42	45.84	39.78	. 32	. 67	
Linseed Oil Meal	1.38	35.13	29.58	. 40	. 83	
Alfalfa Hay (early-bloom)	0.95	16.56	11.07	1.13	. 21	20.8
Alfalfa Hay (mid-bloom)	0.91	15.25	9.81	1.20	. 20	11.9
Alfalfa Hay (full-bloom)	0.83	13.94	8.68	1.12	. 18	5.9
Alfalfa Hay (mature)	0.80	12.40	7.02	. 65	. 15	2.6
$\begin{aligned} & \text { Timothy Hay } \\ & \text { (mid-bloom) } \end{aligned}$	0.78	7.35	3.19	. 36	. 17	1.7
Timothy Hay (late-bloom)	0.76	7.30	3.17	33	. 16	1.6
Red Clover Hay	0.88	12.79	7.48	1.31	. 21	5.7
Bone Mea, steamed				30.00	14	
Ground Limestone				38.00	. 02	
Deflourinated Rock Phosphate				32.00	18.00	
$\begin{aligned} & \text { Dicalcium } \\ & \text { Phosphate } \end{aligned}$				32.00	18.00	

-Adapted from Nutrient Requirements of Horses. National Acedemy of Sciences. Washngtion. D C , 1973

- One ine of beta-carotene equals 400 International Unist of Vitamun A


## GUIDELINES IN SELECTING RATIONS

Livestock are fed under a rather wide range of conditions. Before a proper ration is selected, the feeding corditions must be identified. As an example, dairy cattle should be fed a different concentrate ration if they are oeing fed free choice high quality alfalfa ryy than if they were receiving their roughage feed from blue grass pasture.
it guidelines given are often referred to as "rule, of tnumb." However, most of the guidelines are a result of extensive research by livestock nutritionists. Perhaps these guidelines are referred to as "rules of thumb" because they are somewhat general in theır recommertüations. In some situations, more should be fed than the guideline
suggests. In other situations, less should be fed than the guideline suggests The old livestock feeding adage, "The eye of the master fattens his cattle," may be appropriate to remember in feeding livestock The following guidelines serve only as a starting point in selecting a ration.

1 Trace mineral salt should be fed free choice
2. The protein in coricentra. ss averages 80 percent digestible.
3. Dry feeds contain about 90 percent dry matter. Hay contains about 80 to 85 percent dry matter
4. Water in a clean, fresh condition should be provided free choice.

## Guidelines for Dairy Cattle

## LACTATING COWS

## Dry Roughage

Fieed (on the average) about 2 percent of the cov's body weight. For example, a 1,500 pound cow would receive 30 pounds of hay. The amount ': $: 4$ vary from 1.5 percent (older animals) to 3.5 percent (younger animals).

Estimated daily intake for amount of roughage, in addition to body weight, is determined by the quality of the roushage fed. As a guide for estimating the consur, otion of hay on dry matter basis and fed free choice, the following rules of thumb are suggested.

Roughage Quality	Daily Intake   (\% of body weight)
Excellent	30
Good	25
Average	2.0
Fair	1.5
Poor	10

It is important to remember the following when feeding roughage to darry cattle if cows are allowed to consume all the roughage they want, they may not have the capacity to consume enough conce,"trates to meet the energy requirements of high milk production So, sometımes a maximum roughage consumption level must be established. In some states, the Dairy Herd Improvement Association (DHIA) uses 1.75 percent of body weight as the maximum amount allowed.

[^6]hay. For example, if 12 pounds of hay is the total roughage, 6 pounds of it can be replaced with 18 pounds of silage

## Concentrates

The concentrate mixture of feeds will vary with the kind of roughage fed. A higher protein concentrate mixture will be required when a low quality roughage is fed.

Concentrates are fed to provide the nutrients that are provided by roughage. The "rules of thumb" for concentrate feeding are based upon average intakes of average quality hay. These general "rules of thumb" are:

- One pound of concentrate for every 3 pounds of milk produced by high testin breeds ( 7.5 to 5.5 percent butterfat), and/or
- One pound of concentrate for uvery 4 pounds of milk produced by low testing breeds ( 3.0 to 4.5 percent butterfat)

These "rules of thumb" work very well for high testing cows producing about 30 pounds of milk and low testing cows producing 35 to 40 younds of milk. Thus, high producing cows are underfed and low producing cows are overfed.

More specific recommendations are as follows:
For high tesing cows (butterfat percentage 4.5 to 55) -

One pound of concentrate for each 2 pounds of milk produced above that level of milk production expected from feeding only roughage. High testing cows can be expected to produce 15 to 20 pounds of milk per day on roughage alone. Therefore, a cow producing 40 pounds of 4.5 to 5.5
percent butterfat should be fed approximately 10 to 12 pounds of concentrate.

For low testing cows (butterfat percentage 3.0 to 4.5) -

One pound of concentrate for each 2.5 pounds of milk produced above that level of milk production expected from feeding only roughage. Low testing cows can be expected to produce 20 to 25 pounds of milk per day on roughage alone. Therefore, a cow producing 60 pounds of 3.0 to 4.5 percent butterfat should be fed approxımately 14 to 16 pounds of concentrate.

The protein percentage, crude or digestible, whichever value is used, should be adjusted, depending upon the kind and quality of roughage fed.

The following table gives suggested percentages of digestible protein needed in concentrate rations with the different quality roughages cows are fed.

Quality of Roughage	Percent Digestible Protein   in Concentrate Mixture
High quality legume   hay or legume silage	$9-10$
Avernge quality   legume hay	$12-13$
One-haif grass hay   stover, ccirn or   sorghum silage	$15-16$
No legume - roughage   extremely low   in protein	$17-20$

## Pasture

For dairy cows on good quality pastrıre, feed two-thirds as much concentrate as when the roughage is hay or hay and silage. If pasture is of poor quality, the protein percentage of the concentrate should be adjusted. The percent protein in the concentrate mixture should be determined by the quality of the pasture.

Quality of Pasture	Percent Protein in   Concentrate Mixture
Excellent, young;	$8-9$
green pasture	$12-14$
Grass-legume   pasture- grass   near ripen'i.j	$12-13$
Coarse grass-   legume, grasses	$14-15$
Fully ripened   grass pasture	

## DRY COVVS

Thin dry cows may be fed up to 4 to 6 pounds of home-grown grains per day The amount of grain to feed should be determined by the condition of the cow. Cows in good condition should be fed little or no grain unless the roughage is of poor quality.

Soybean meal, or other protein supplement, may be needed to balance the protein when dry cows are fed only corn silage.

Two wesks before calving, grain amount should be increased to 15 to 18 pounds daily. This wil help cows get accustomed to high grain consumption, which will be required after calving. It will also help to reduce the occurrence of the disease ketosis (a metabolic disorder).

After calving, cows should be brought to peak milk production as soon as possible. This can be done by feeding slightly more grain than required and continuing until there is no increase in milk production. Then the amount of grain fed should be adjusted to the milk production.

## YOUNG DAIRY ANIMALS

## Birth to Four Months of Age

Colostrum is the first milk produced by the cow after freshening. It is important to the calf. Colostrum is rich in proteins, vitamins, and minerals. The antibodies it contains help protect the calf from diseases.

Usually the calf is left with the cow (its mother) for the first three days

The suggested milk feeding schedule is:

Age (Days)	Amount of Milk to Feed Daliy
$0-3$	$4-6 \mathrm{lb}$. colostrum or nurse cow
$4-24$	$6-8 \mathrm{lb}$
$25-31$	$4-6 \mathrm{lb}$

## Recommendations:

- Feed whole milk or equivalent amount of milk replacer.
- Feed in two equal feedings.
- Feed low amount for small breeds; high amount for large breeds.


## Four to Twelve Months of Age

Rumen capacity at this age is not sufficient to allow the animal to meet energy needs from roughage alone. Feed 1 to 3 pounds of grain, depending upon the age, size, and condition of the anımal.

## Twelve Months to Calving

- Feed grain only if the roughage is of poor quality.
- Feed free choice mineral mixture.
- Two months before freshening, start feeding grain 4 to $€$ pounds daily; gradually increase to accustom heifers to high grain consumption at calving


## Guidelines for Beef Cattle

## BEEF COW HERD

## Summer (Pasture) Feeding

The pasture will supply most of the nutrients needed. Feed mineral mixture free choice. (Mineral mixture 1 part steamed bone meal, 1 part trace mineral salt, 1 part dicalcium phosphate.) Salt may be fed free choice.

If the pasture is short or inadequate:

- 15 pounds of corn silage per head per day will substitute for one-third of the pasture acreage.
- 30 pounds of corn silage will make up for twothirds of the pasture acreage.
- 5 pounds of good quality hay will give the same results as 15 pounds of corn silage.
- 10 pounds of good quality hay will give the same results as 30 pounds of corn silage.


## Winter Feeding

- Feed cows dry roughage on the average of 2 percent of their body weight. (Range is from 1.5 to 3.5 percent.)
- Replace one pound of hay with three pounds of silage.
- Supply pregnant and lactactıng cows with the foiiowing amounts of nutrients:

Nutrient	Gestation	Lactation
Proteın - percent of   ratıon	$6-7$	$9-10$
Proteın - pounds   dally	$0.8-15$	$1.8-2.3$
TDN - percent of   ratıon	$45-50$	$55-60$
TDN - pounds dally	$6-10$	$11-15$

## MARKET CATTLE

- Feed 2 percent of body weight in grain per day. (A tull feed of grain is commonly considered to be approximately 2 pounde of grain per 100 pounds of body "yeight.)
- Feed 1 to 2 pounds of protein supplement per day.
- Feed 4 to 6 pounds of hay per day.
- Steers on full feed should gain approximately 1.5 to 2.5 pounds per day.


## Guidelines for Sheep

## EWES

Ewes should be fed until fifteen weeks into the gestation period.

- Feed 3 to 3.5 percent of their body weight in day per day. A 100 -pound ewe should receive 4 to 6 pounds of hay per day.
- Feed $1 / 3$ pound protein supplement per day when corn silage is fed.

For the different kinds of roughage, use the following guidelines:

Roughage	Amount in Pounds
Legume hay	3.5
Grass hay	4.0
Corn silage	75

## Breeding Period

Ewes that are on legume pasture should be removed two weeks before breeding starts and placed on grass pasture.

Feed $1 / 2$ pound of grain (corn-oats) two weeks before and one week after breeding season starts.

## Gestation Period

For the first $31 / 2$ months of pregnancy, good quality pasture or hay (fed free choice) is adequate.

For the last $11 / 2$ months of pregnancy (in winter or spring lambing), feed:

- 4-5 pounds hay plus $1 / 2-3 / 4$ pound shelled cori., or
- 2-5 pounds hay plus $11 / 2-2$ pounds shelled corn, or
- 7-8 pounds corn silage plus 1 pound sheiled corn and $1 / 4$ to $1 / 2$ pound protein supplement.

Hay should be of at least average quality legume or legume-grass mixture.

## Lactation Period

Feed the ewe lightly for a day or two after lambing. Provide plenty of fresh water.

By the third day, feed:

- 3-3 $1 / 2$ pounds hay plus $3-31 / 2$ pounds shelled corn, or
- 9-11 pounds corn silage plus 11/2-2 pounds shelled corn plus $1 / 2$ pound supplement.


## LAMBS

Start creep feeding when lambs are approximately 10 days of age Ration. 6 parts craciked corn, 2 parts oats or bran, 2 parts protein supplement.

When lambs are 4 weeks old, fued a concentrate mixture contaıning 18 percent crucle proteın. Contınue this untıl lambs are weaned.

Late lambs can be produced for market from grazing on good pasture.

Finishing lambs on dry lot should be fed 2 pounds shelled corn, 2 pounds legume hay, $1 / 2$ pound protein supplement daily. Lambs on full feed should gain approximately $1 / 2$ pound per day.

## Guidelines for Swine

## SOWS AND GILTS

## Gestation

Restrict feed intake to 4 to 5 pounds per head daily of 14 percent crude protein diet.

## Farrowing

Three to five days before farrowing, add to concentrate mixture $1 / 3$ pound wheat bran or oats or alfalfa meal, or a combination of the three, to provide bulk. The feeding level of bulk ration is sows, $8-10$ pounds; gilts, 6-8 pounds. Continue this ration, fed fr? :hoice, for 3 t's 5 days after farrowing.

## Lactation

Self-feed a 14 percent crude protein ration high in energy and low in fiber.

## MARKET SWINE

## Young Pigs

Feed 18 to 20 percent crude protein concentrate as creep ration to pigs of ages 3 to 6 weeks. At least half the grain in the ration chould be corn.

Antibroiic included in the raiion should be 100 to 200 grams per ton of feed.

## Growing Pigs - to 75 pounds

The ration should contain 16 percent crude protsin. A mixture of corn and a supplement which supplies enough of the essential amino acids is a suitable ration to self-feed.

Amount of antibiotic needed varies from 5 to 100 grams per ton of feed.

## Finishing Market Swine 75-125 pounds

The ration should contain 14-15 percent crude proteir for self-feeding.

If an antıbiotic is used, supply 20-50 grams per ton of ration.

## Finishing Market Swine 125 pounds to market

The ration should contain 12-14 percent crude protein for self-feeding.

If an antibiotic is used, supply 20-50 grams per ton of ration.

If market swine are hand fed, feed 4 to 4.5 percent of their body weight per day. Swine weighing 50 to 200 pounds and on full feed should have an average daily gain of $1 / 2$ pounds.

## Guidelir $2 s$ for Horses (Mature)

Idle - in pasture, feed free choice 2 pounds of hay for each 100 pounds body weight.

Light Work (under 3 hours per day) - Feed $1 / 4$ to $1 / 2$ pound of grain and $11 / 4$ to $11 / 2$ pounds of hay for each 100 pounds of body weight.

Medium Work (3 to 5 hours perday) - Feed 1 pound
of grain and 1 pound of hay for each 100 pounds of body weight.

Heavy Work (over 5 hours per day) - Feed $11 / 4$ to $11 / 2$ pounds of grain and 1 pound of hay for each 100 oounds of body weight. Mineral mixtures may be mixed with the grain ration or fed free choice. Loose salt should be fed free shoice.

Guidelines for Poultry

LAYING HENS
Leghorns

Age   (weeks)	Body   Weight   (pounds)	Feed   Consumption   (pounds/week)	Typical Egg   Production*   (hen-day \%)
22	3.14	116	10
24	3.31	131	38
26	347	147	64
30	3.80	170	88
40	400	1.70	80
50	412	169	74
60	4.19	156	68
70	4.19	163	62

- Example (as explanation) A producer with 100 birds at 30 weeks of age could expect to receive 88 eggs per day from that group of laying hens ( 100 birds $\times 88 \%$ from column $=88$ eggs)


## LEGHORN PULLETS

Age in Weeks	Body WeightFeed Consumption   (pounds per 2-week   period)	
0	008	020
2	030	040
4	060	0.80
6	099	115
8	137	143
10	174	170
12	209	190
14	234	2.03
16	256	203
18	278	2.03
20	300	203

TURKETS

Agein Weeks	Large Toms		Large Hens	
	$\begin{array}{\|c} \text { Average } \\ \text { Live } \\ \text { Weight } \\ \text { (in pounds) } \end{array}$	Total Feed Required (in pounds)	Average Live Weight (in pounds)	Total Feed Required   ) (in pounds)
1	0.24	0.2	0.24	0.2
2	060	07	053	06
3	1 28	1.7	104	15
4	2.2	3.0	1.54	25
5	33	4.5	24	3.8
6	4.4	64	35	55
7	57	8.8	4.6	74
8	7.3	11.7	57	97
9	88	15.0	68	123
10	10.4	189	8.1	153
11	121	23.3	9.5	185
12	13.9	283	10.6	220
13	157	33.8	117	258
14	17.6	39.6	128	296
15	19.4	460	139	336
16	21.4	52.8	148	379
17	231	596	157	42.4
18	249	66.9	165	469
19	26.7	744	172	517
20	28.2	824	179	56.6
Pre-starter ration 28 percent protein 1-4 weeks				
Starter ration		percent prot	- 5	5-8 weeks
Finishing ration 2 - with changes		percent prot	- 9	9-12 weeks
		percent prot		13-16 weeks
		Market at about 20 weeks	$\text { rotein } \quad 17$	17-20 weeks

BROILERS

Age in Weeks	Male Broiler Chickens (pounds)		Female Brolier Chickens (pounds)	
	Average Live Welght	Neekiy Feed Consumption	Average Llve Welght	Weekly Feed Consumption
1	0.29	0.26	026	024
2	070	057	066	0.53
3	123	086	114	078
4	190	1.18	174	1.10
5	2.76	163	2.45	142
6	373	216	315	176
7	463	241	385	2.01
8	556	267	454	214
9	6.45	2.91	5.18	223
Starter ration Finishing ration Withdrawal ration		23 percent protein 20 percent protein 18 percent protein		0-3 weeks
		3-6 weeks		
		6-7 weeks		

Source: Nutrient Requirements of Poultry, 8th revised edition, National Academy Press, 2101 Constitution Ave NW, Washington, DC 20418, 1984

## Livestock Space Requirements*

These space requirements and design recommendations were furnished by the Midwest Plan Service and are based on currently popular types of buildings and equipment.

## Beef Cattle

Fcediot, sq. ft./head
$20^{\prime}$ in barn and Lot surfaced, cattle have
$30^{\prime}$ in lot free access to shelter
$50^{\circ}$ Lot surfaced, no shelter
$150^{\prime}-800^{\prime} \quad$ Lot unsurfaced except around waterers, along bunks and open-front buildings, with a connecting strip
20'-25' Sunshade
Buildings with Feediots, sq. ft./head
20'-25' $\quad 600$ lbs. to market
15'-20' Calves to 600 lbs .
1/2 ton/head Bedding
Cold Confinement Buildings, sq. ft.head
$30^{\prime} \quad$ Solid floor, bedded
17'-18' Solid floor, flushing flume
$17^{\prime}-18^{\prime} \quad$ Totally or partly slotted
100 Calving pen
1 pen/12 cows Calving space
F sders, in. head along feeder
All animals eat at once:

$18 "-22 "$	Calves to 600 lbs.
$22 "-26 "$,	600 lbs. to market
$26 " .30 "$	Mature cows
$14 "-18 "$	Calves

Feed always available:

$4 " 6 "$	Hay or silage
$3 "-4 "$	Grain or supplement
$6 " 4$ space/	Grain or silage
$\quad 5$ calves	Creep or supplement

Bunk throat height
Up to 18 " for calves, 22 " for feeders and mature cows
Use 30" height only if hogs will run with cattle
Bunk width
$48^{\prime \prime}$ if fed from both sides of bunk
54 " 60 " if bunk is divided by mechanical feeder
18 " bottom width if fed from one side of bunk

## Waterors

40 head/available water space in drylot
Corrals

600 lbs.	600-1,200 lbs	1,200+16s
	sq. fi.head	
$\begin{gathered} 14 \\ 6^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & 17^{\prime} \\ & 10^{\prime} \end{aligned}$	20' Holding   12' Crowding

bolation asick Pons
40-50 sq. ft.head
Pens for $2 \%-5 \%$ of herd
mounds
25 sq. ft.head Minimum

## Feeder and Waterer Space

Self-feeders: one space/5 pigs
Supplement feeders: one space/15 pigs
Sow feeders: 1 'sow solf-feed, 2 'sow all fed at once
Waterers: one space/20 to 25 pigs

## Building Floor Space

Sows and boars: 15 to 20 sq . ft .
Pigs starting thru finishing:
12 to 60 lbs .4 sq . ft.
60 to 125 lbs .6 sq . ft.
125 to market-8 sq. ft.
100 to market: 5 sq. ft. under roof, +13 sq. ft. on outside paved lot
Sow and litter:
26 sq. ft.: Slotted floor, full confinement
32 sq . ft. inside +42 sq . ft. outside for indoor-outdoor system

## Pasture Space

10 gestating sows/acre
7 sows with litters/acre
50 to 100 growing-finishing pigs/acre depending on fertility.

## Shade Space

15 to 20 sq. ft./sow
20 to 30 sq. ft./sow and litter
4 sq. ft./pig to 100 lbs .
6 sq . ft./pig over 100 lbs .

## Floor and Lot Stopes

Slotted floors: usually flat
Farrowing, solid floors:
$1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime} / \mathrm{ft}$. without bedding
$1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime} / f$ t. with bedding
Finishing: $1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime} / \mathrm{ft}$.
Paved lots: $1 / 4 "$ to 1 "ft.
Paved feeding floors:
Indoors: $1 / 4$ "/ft. mininum
Outdoors: 1 "ft.
Building alleys:
1/2"ft. cross slope for crown
$1 / 10^{\prime \prime}$ to $1 / 4^{\prime \prime f t}$. to drain
Gutters and pits:
$1 " / 25$ 'to $1^{\prime \prime} / 100^{\prime} \approx=$ drains
$1.5 \%$ slope for flush gutters
Slot Widths, in slotted floors

New-born pigs ${ }^{1}$	$3 / 8^{\prime \prime}$ and $1^{\prime \prime}$
12 to 60 lbs. ${ }^{\prime \prime}$	$3 / 4^{\prime \prime}$ to $1^{\prime \prime}$
60 to market	$1^{\prime \prime}$
Sows and Boars	$1^{\prime \prime}-1-1 / 4^{\prime \prime}$

${ }^{1}$ Cover slots during farrowing; 1 " wide slots behind sows, $3 / 8^{\prime \prime}$ elsewhere
${ }^{2} 3$ " width preferred over wider slats

## Dairy Cattle

## Recommended stall barn dimensions

Alley width	
Flat manger-feed alley	5'8"6'6"
Feed alley with step manger	4'0'-4'6"
Service alley with barn cleaner	6'0'
Cross alley ${ }^{\text {l }}$	4'6"
Manger width	
Cows under 1,200 lb:	20"
Cows 1,200 lbs. or more	24"-27"
Cutters	
Width2	$16^{\prime \prime}$ or $18^{\prime \prime}$
Depth, stall side	11"-16"
Depth, alley side	11'-14"
"Taper the end stalls inward 6" at the front for added turning room for a feed cart.   2 Or as required for barn cleaner.	
Free gtall dimencions	
Calves	Widh $\times$ Length
6 weeks to 4 months	2'0"×4'6"
5 to 7 months	2'6" ${ }^{\prime \prime} 5$ '0'
Heifors	
8 months to freshening	$30^{\prime \prime} \times 5^{\prime \prime}$
Cowe (average herd weight)	
1,000 lbs.	3'6" $\times 6$ '10"
1,200 lbs.	3'9'' x 7'0"
1,400 lbs.	4'0" $\times 7$ 7'0'
1,600 lbs.	4'0' $\times$ 7'6"

## Typleal free stall alloy widths

Feeding alley between a bunk and the front of a stall row 9'-10'
Feeding alley between a bunk and the back of stall row 10'-12'
Resting alley between the backs of 2 stall rows:
Solid floors 8'-10'
Slotted floors
Cow stall plattorm sizes
Use electric cow trainers

Cow molght	Stenchion staly	Tin matis	
	Wrath Length	Wrath	Longth
Under 1.200 tbs .	$4^{\prime} 0^{\prime \prime} \quad 5^{\prime \prime} 6^{\prime \prime}$	$4{ }^{\prime \prime} 0^{\prime \prime}$	5'9'*
1,400 Jbs		4'6'	$6^{\prime} 0^{\prime \prime}$
Over 1,600 lbe	Not recommended	$5^{\prime} 0^{\prime \prime}$	$6^{\prime \prime}{ }^{\prime \prime}$

## Stat Spacing

Elevated calf stalls: $3 / 4$ " between $1 \times 2$ "s on edge
Calves, wide slats: 1-1/4" slot
Cows, wide slats: $1-1 / L^{\prime \prime}-1-3 / 4^{\prime \prime}$ slot
Feadors, in. head along feeder
All animals eat at once:
$18^{\prime \prime}-22^{\prime \prime}$, ealves to 600 lbs .
22"-26", heifers
$26^{\prime \prime}-30^{\prime \prime}$, mature cows
Feed always available:
4" 6 ", hay or silage
Bunk capacity:
$1-1-1 / 2 \mathrm{cu}$. ft./ft. of bunk length min. for animals fed twice laily.

Bunk throat height
Up to 16 " for calves, 20 " for heifers, 24 " for mature cows, 30 " for mature cows on unscraped, flat apron.
Bunk widths
48" if fed from both sides of bunk
$54 " 60^{\prime \prime}$ if bunk is divided by mechanical feeder
18" bottom width if fed from one side of bunk

## Waterers

40 head/available water space in confinement. Pave at least a 10 ' apron around u aterers.

## Sheep

## Fendor space

Group-fed:
16"-20"iewe
9"-12"hieder lamb
Self-fed:
$10 "-12 "$ silage, $8 "-10$ hay/ewe
3"-4"ffeeder lamb
Lamb creep space:
1.5-2 sq. ft. 月amb

## Waterer space

Per automatic bowl
$40-50$ ewes or ewes with lambs
$50-75$ feeder lambs
Per ft. of tank perimeter 15-25 ewes $0:$ ' ewes with lambs 25-40 feeder lambs

## Shother space

Open-front building with lot:
10-12 sq. ft.lewe
12-16 sq. ft./ewe and lambs 68 sq . ft./feeder lamb
Lot:
$25-40$ sq. ft./ewe
25-40 sq. ft./ewe and lambs
15-20 sq. ft./feeder lamb
Solid floor (confinement):
12-16 sq. ft.lewe
15-20 sq. ft.lewe and lamb 8 -10 sq. ft.ffeeder lamb
Slotted floor confinement:
8-10 sq. ft.lewe
10-12 sq. ft./ewe and lamb 4-5 sq. ft./feeder lamb
Lambing pens (jugs) $4^{\prime} \times 4^{\prime} \times 30^{\prime \prime}$ or $4-1 / 2^{\prime} \times 4-1 / 2^{\prime} \times 36^{\prime \prime}$;
provide grain and water
Nursery pens for 2 to 4 -day old lambs before putting into group pens:
about 16 'x16' for 20 ewes and 30 lambs
Detailed construction data and livestock building plans are available through the Midwest Plan Service and Extension Agricultural Engineers at several cooperating universities. Inquiries and requests for printed material can be made directly to: Midwest Plan Service Engineırrs, Dept. c ${ }^{\prime}$ Agrıcultural Engineerıng. 590 Woody Hayes Drive, Columbus, OH 43210.

## SPACE REQUIREMENTS FOR POULTRY AND HORSES

## Broilers

Feeder space -
100 linear inches per 100 birds, up to 2 weeks of age
300 linear inches per 100 birds, 2 to 6 weeks of age
350 linear inches per 100 birds, 7 weeks to market

## Water space -

25 linear inches per 100 birds, up to 2 weeks of age
50 linear inches per 100 birds, 2 to 6 weeks of age
75 linear inches per 100 birds, 7 weeks to market
Shelter space -
20-30 square inches, up to 2 weeks of age
1 square foot, 2 weeks to market

## Pullets

Feeder space -
100 linear inches per 100 birds, up to 2 weeks of age 200 linear inches per 105 birds, 2 to 6 weeks of age 250 linear inches per 100 birds, 7 ’o 12 weeks of age 300 linear inches per 100 birds, 13 to 20 weeks of age

## Water space -

25 tinear inches per 100 birds, up to 2 weeks of age
50 linear inches per 100 birds, 2 to 6 weeks of age
75 linear inches per 100 birds, 7 to 12 weeks of age
100 linear inches per 100 birds, 13 to 20 weeks of age

## Shelter space -

20-30 square inches, first 7 to 8 weeks
45-55 square inches, 9 to 18 weeks

## Laying Hens

Feeder space - 300 linear inches per 100 birds
Water space - 50 linear inches per 100 birds
Shelter space - 64 to 80 square inches per bird

## Turkeys

Feeder space - 200-300 linear inches per 100 birds
Water space - 36 linear inches per 100 birds
Shelter space -
Range rearing, 125-250 birds per acre
On sandy soils, up to 1,000 birds per acre
Confinement - large toms, 5.5 square feet per bird large hens, 3.5 square feet per bird mixed flock, 4.5 square feet per bird

## Horses

Feeder space - 3 to 4 linear feet per horse
Water space - a horse drinks 10 to 12 gallons per dav; a supply of fresh water should be available at all times

Shelter space - an area $12 \times 12$ feet per horse
age of puberty in male livestock

	Age in Months
Cattle	$8-12$
Swine	$5-7$
Sheep	$5-7$
Horses	12 (breeding deferred till 24 mo )

## MATING CAPACITY OF SIRES

Number of Females to Mate In a Breeding Season

Ar.ımal	Pasture Mating	Hand Mating
Beef cattle:		
$\quad$ Yearling bull	$10-12$	20
2-year-old or over	$25-30$	$30-50$
Sheep		
$\quad$ Ram lamb	$10-12$	$10-20$
Ram 18 months or over	$20-25$	$30-50$

## MATING CAPACITY OF COCKEREL AND :OMS

Cockerel - Leghorn - 1 per 15 to 17 hens at mating time
Toms - artificial insemination is used due to low fertility with natural mating

RECOMMENDED BREEDING LOAD FOR BOARS

Age (Months)	Pen Mating	Mating by Hand*
7 or less	None	None
$7-9$	2 per week	2 per week
$9-12$	$8-10$ in 3-week period	$15-20$ in 3-week period
$12-18$	$10-12$ in 3-week period	$20-25$ in 3-week period
18 and over	$12-15$ in 3-week period	$25-30$ in 3-week period

- These are based on optimum control and distribution of matings throughout the period

AGE WHEN PUBERTY OCCURS

Heifer	$4-8$ months
Gilt	$4-6$ months
Ewe Lamb	$7-10$ months
	(or first fall season)
Horses	$12-15$ months
Chickens	$22-26$ weeks

## DURATION OF HEAT PERIOD AND HEAT CYCLE

	Duration of Cycles   (Days)	Average	Variation	Average
Cow	21	$18-24$	14 hrs	$8-30 \mathrm{hrs}$
Sow	21	$18-24$	$2-3$ days	$1-5$ days
Ewe	16	$14-20$	35 hrs	$1-3$ days
Mare	22	$17-30$	6 days	$2-11$ days

## DURATION OF GESTATION

	Range in Days	Average Duration
Sineep	$144-152$	148 days ( 5 months)
Swine	$98-124$	114 days ( 3 months, 3 weeks, 3 days)
Cattle	$278-288$	283 days ( $91 / 2$ months)
Horses	$310-370$	336 days ( 11 months)
Goats	$140-160$	151 days ( 5 months)

## UNIT III

## EQUIPMENT AND SUPPLIES COST DATA

A In this unit, data will be provided for you to use with your students. These dat will help them complete the crop and livestock reporting sheets and the crop-livestock budgets. (Other sources of data could be used if you so desire.)
B. It is suggested that you make these data or comparable data available to your students as jutlined in part II, pages 3-4
C. The sources of data for this unit include:

Excerpts from Livestock Budgets (Ohıo Cooperative Extension Service)
Buildings and Equipment Costs Custom Hire Rates

Excerpts from Tillage Systems (Ohıo Agricultural Educatıon Curriculum Materials Service)
Estimates on tillage based on hours per acre, pages 25-35
List of new equipment costs from local dealers
List of supplies - fertilizer, chemicals, seeds - from local dealers
Summary of the grain market from a local eievator

## BUILDINGS AND EQUIPMENT COST FOR LIVESTOCK

(for a production cycle or one year)

		$\begin{aligned} & 1985 \\ & \text { Cost } \end{aligned}$	Your Cost
	Prices per unit		
Dairy	milk cow	\$550.00	
	replacement heifer	50.00	
	veal	20.00	
Beof	feeders - 450 to 1050 lb . (9 mo. use)	35.00	
	backgrounding - 400 to 650 lb . (180 days)	25.00	
	cow \& calf - cow on paetıre most of the year	50.00	
Hogs	farrow (pasture system), 1 litter/yr.	60.00	
	farrow (high investment) - farrowing house, 2 litters/yr.	190.00	
	farrow (low investment) - unheated barns, 2 litters/yr.	130.00	
	finishing - 50 to 230 lb . hog (high investment)	12.00	
	finishing - 50 to 230 lb . hog (low investment)	7.00	
	farrow to finish (pasture system), 1 litter/yr.	110.00	
	farrow to finish (high investment), 2 litters/yr.	500.00	
	farrow to finish (low investment), 2 litters/yr.	210.00	
Poultry	layers (14 mo. cycle)	0.07/doz.	
	broilers (2 mo.)	0.12 ea.	
	turkey (5 mo.)	0.54 ea.	
Sheep	ewe and lamb budget	11.00	
	feeder lamb	2.00	
Horses	brood mares	70.00	
	stable for training standard breeds	70.00	

Note: Keep in mind that the prices given are 1985 prices The last column, "Your Cost," is to be used for price adjustmerits needed as economic conditions chaıige

## EQUIPMENT COST AND CUSTOM HIRE RATES

1985 Machinery Cost - new prices*		Your   Cost
Tractor 100 h.p. - pull 5-16"	$\$ 42,000.00$	-
Tractor 70 h.p. - pull 4-16"	28.00000	-
Plow 5-16"	$5,500.00$	-
Plow 4-16"	4,50000	-
Conservat:ll Chisel Plow 13'	$5,900.00$	-
Chisel Plow	$2,700.00$	-
Cultimulcner 12'	$4,500.00$	-
Field Cultivator 18'	$3,000.00$	-
Corn Planters	$2,500.00$	-
6 Row Cultivator	$2,500.00$	-
Disc Harrow 17'	$3,600.00$	-
Combines - 4 row corn head and 13'	$60,000.00$	

1985 Custom Hire Rates - includes equipment, fuel, repars, and one person on
the equipment

Plow	\$11.00/A
Chisel	9.50 íf
Disc	6.00/A
Planting - conventional	7.50/A
Planting - no-till	12.00/A
Grain Drill	6.00/A
Combine	20.00/A
Mowing and Conditioning	7.00/A
Rake	4.00/A
Baling - square bale	0.30/bale
Baling - large round	6.00/bale
Trucking Grain - 0-30 mi.	0.10/bu.
Trucking Grain - over 30 mi .	0.14/bu.

[^7]Note: Keep in mind that the prices given are 1985 prices. The last column, "Your Cost," is to be used for price adjustments needed as economic conditions change.

ACRE-HOURS FOR TILLAGE IMPLEMENTS AND OTHER EQUIPMENT

Implement	Size	A/Hrs.	Hrs./A	Implement	Size	A/Hrs.	Hrs./A
Moldboard Plow	3-14"	1.53	0.67	Spike-tooth Harrow	12 ft .	524	0.19
	4-16"	2.33	0.43		18 ft	786	0.13
	5-16"	291	0.34		24 ft .	10.47	010
	6-16"	3.50	$0.23$	Cultipackers	$\begin{aligned} & 12 \mathrm{ft.} \\ & 15 \mathrm{ft} . \end{aligned}$		0.19
Chisel Plow	10 ft .   12 ft .   15 ft.   17 ft	4.36				$\begin{aligned} & 5.24 \\ & 6.55 \end{aligned}$	0.15
		5.24	0.19	Rotary Hoes	4 row 6 row 8 row	$\begin{array}{r} 679 \\ 10.18 \\ 1358 \end{array}$	$\begin{aligned} & 015 \\ & 0.10 \\ & 0.07 \end{aligned}$
		6.55 7.42	0.15 0.14				
		1.42	0.14				
Disc Harrow	12 ft . 16 ft . 20 ft 24 ft .	5.24	0.19	Sprayers   Planters	8 row	727	0.14
		6.98	0.14				
		8.73 10.47	0.12			3.70	0.27
		10.47		Planters	con.	3.70	0.27
Spring-tooth Harrow	12 ft . 15 ft . 18 ft .	$\begin{aligned} & 5.24 \\ & 6.55 \\ & 7.86 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 015 \\ & 013 \end{aligned}$		$\begin{aligned} & 4 \text { row } \\ & \mathrm{N}-\mathrm{T} \end{aligned}$	3.70	0.27
					$\begin{aligned} & 6 \text { row } \\ & \mathrm{N}-\mathrm{T} \end{aligned}$	5.56	0.18
Field Cultivator	$121 / 2 \mathrm{ft}$. $151 / 2 \mathrm{ft}$. 18 ft . 24 ft .	$\begin{array}{r} 5.46 \\ 676 \\ 7.86 \\ 1047 \end{array}$	$\begin{aligned} & 0.13 \\ & 0.15 \\ & 0.13 \\ & 0.10 \end{aligned}$	Combines   @ 3 m.p.h.	$\begin{aligned} & 8 \text { row } \\ & \mathrm{N}-\mathrm{T} \end{aligned}$	714	0.14
					4-30's	260	0.39
					6-30's	3.90	026
					8-30's	5.00	020

Formula used to determine the above figures-
A/tirs. $=\frac{\text { Speed (m p.h.) } \times \text { Width (ft.) } \times \text { Fieid Efficiency (\%) }}{825}$
Assumptions used for arriving at figures above
Tillage - 4.5 m p.h., $80 \%$ field efficiency
Sprayıng and cultivatıon-4.0 m.ph., 75\% field efficiency
Harvestıng - $3.0 \mathrm{mph}, 70 \%$ field efficıency
Plantıng - 45 m.p.h , iJ\% field efficiency

## COST OF FARM SUPPLIES



This list of farm: supplies is provided as a glide for you and your students to use in preparing crop reports and budgets These prices and products may vary from area to area in the state.

Note: Keep in mind that the prices given are 1985 prices The lasi column, "V.our Cost," is to be used for price adjustments reeeded as economic conditions change.

## MARKETING DATA

	Prices May 1986	Price Changes	New Crop Sept., Ort., Nov., Dec., 1986	Price Changes
GRAINS				
Corn	\$2.10/bu		\$1.90/bu	
Soybeans	5.30/bu		4.95/bu	
Wheat	3.70/bu		3.20/bu	
Oats	1.10/bu		---	---
Hay	60.00/ton		-	---
LIVESTOCK AND POULTRY				
Steers	50¢/lb			
Barrows and Gilts	52¢/lb			
Lambs	74¢/1b			
Broilers	42¢/lb			
Eggs (large white)	51¢/doz			
Turkeys	49¢/1b			
Milk	\$11.90/cwt			

Note: You may want to consult The Wall Street Journal, the USDA Economic Research Service's Livestock and Poultry Situation and Outlook Report, or local newspapers for current and futures marketing information.

TRANSPARENCY MASTERS follow on the next pages.

## LIME REQUIREMENTS TO INCREASE SOIL pH TO FOUR LEVELS

(ir, terms of T/A Ag-Ground Limestone, T.N.P. 90+, 8 inch Plow Depth)

## pH Levels

	Mirıeral Soils			Organic Soils
Lime Test Index	7.0	6.5	6.0	5.2

TONS PER ACRE - AG-GROUND LIMESTONE

68	1.4	1.2	1.0	0.7
67	2.4	2.1	1.7	1.3
66	3.4	2.9	2.4	1.8
65	4.5	3.8	3.1	2.4
64	5.5	4.7	3.8	2.9
63	6.5	5.5	4.5	3.5
62	7.5	6.4	5.2	4.0
61	8.6	7.2	5.9	4.6
60	9.6	8.1	6.6	5.1
59	10.6	9.0	7.3	5.7
58	11.7	9.8	8.0	6.2
57	12.7	10.7	8.7	6.7
56	13.7	11.6	9.4	7.3
55	14.8	12.5	10.2	7.8
54	15.8	13.4	10.9	8.4
53				8.9
52	17.9	14.2	11.6	8.9
51	19.0	15.1	12.3	9.4
50	20.0	16.0	13.0	10.0
49	21.1	17.9	13.7	10.5
48	22.1	18.6	14.4	11.0
		15.1	11.6	

## EQUIVALENT AMOUNTS OF LIMING MATERIALS (based on T.N.P. and fineness)

|  |  |  | Pounds to Equal 1 Ton |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| of Agr'l. |  |  |  |

AGRICULTURAL LIMESTONES AND/OR SLAG (air cooled)

Hydrated	$160+$	90	95	98	100	1000	50
Hydrated	$130-140$	90	95	98	100	1200	60
Ag-Superfine	$90+$	80	95	100	100	1600	80
	$80-89$	80	95	100	100	1800	90
Ag-Pulverized	$90+$	60	70	95	100	1700	85
	$80-89$	60	70	95	100	1900	95
Ag-Ground (Base)	$90+$	40	50	2000	100		
	$80-89$	40	50	70	95	2300	115
Ag-Fine Meal	$90+$	30	40	60	85	2500	125
	$80-89$	30	40	60	85	2800	140
Ag-Coarse Meal	$90+$	20	30	50	80	2900	145
	$80-89$	20	30	50	80	3230	160
Ag-Fine Screenings	$90+$	10	20	45	80	3400	170
	$80-89$	10	20	45	80	3800	190
Ag-Coarse Screenings	$90+$	5	15	40	80	4000	190
	$80-89$	5	15	40	80	4300	215

AGRICULTURAL GRANULATED SLAG (water cooled)

Ag-Granulated Slag	$90+$	10	15	60	95	2000	100
	$80-89$	10	15	60	95	2300	115

## ADJUSTMENTS IN LIMING RATION FOR DEPTH OF PLOWING

## Plowing Depth Multiplying Factor

 (inches)| 3 | 0.38 |
| :--- | :--- |
| 6 | 0.75 |
| 7 | 0.88 |


Base	8	1.00

$9 \quad 1.13$

10
1.25
$11 \quad 1.38$
$12 \quad 1.50$

## EXAMPLES OF NITROGEN RECOMMENDED FOR CORN

	Yield Goals (Bu/A)		
Previous Crop	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$
	Annual Application		
	lb N/A		
Forage legume	60	110	150
Grass crop	65	170	200
Soybeans	85	190	200
Continuous corn and other   crops	115	200	200

EXAMPLES OF PHOSPHORUS (expressed as lb $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{A}$ ) RECOMMENDED FOR CORN (Broadcast Program)

	Yield Goals (Bu/A)		
Soil Test Value	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$
	Annual		
lb P/A	Recommendation		
10	75	100	110
20	65	80	90
$30-60$	45	60	70
70	25	40	50
80	20	20	30
90	0	0	20
100	0	0	0

[^8]
## EXPLANATION OF TM 5

## Estimating Phosphorus Recommendations from Table

To estimate the amount of phosphorus needed in the annual recommendation for corn, the following assumptions will be used - yield goal of 150 bushels per acre and a soil test value of 15 pounds per acre. The transparency master shows that the yield goal falls under the 150 bushels per acrecolumn and the 15 pounds per acre is between the 10 and 20 pounds per acre. The values in the table are as follows:
$150 \mathrm{bu} / \mathrm{A}$
$10 \mathrm{lb} . \mathrm{P} / \mathrm{A}$
100
20 lb . P/A 80

The soil test of the example of 15 pounds per acre is halfway between 10 and 20 , therefore, the $\mathrm{P}_{7} \mathrm{O}_{5}$ recommendation is halfway between 100 and 80 or 90 pounds $\mathrm{P}_{2} \mathrm{O}_{5}$ per acre.

## EXAMPLES OF POTASSIUM (expressed as lb K2O/A) RECOMMENDED FOR CORN (Broadcast Program)

Soil Test Value	Yield Goals (Bu/A)								
	$\begin{gathered} 120 \\ \text { C.E.C. } \end{gathered}$			$\begin{gathered} 150 \\ \text { C.E.C. } \end{gathered}$			$\begin{gathered} 180 \\ \text { C.E.C. } \end{gathered}$		
	10	20	30	10	20	30	10	20	30
lb K/A	Annual Recommendation								
50	120	140	160	130	150	170	140	160	180
150	80	100	120	90	110	130	100	120	140
250	40	60	80	50	70	90	60	80	100
350	(30)	(30)	40	(40)	(40)	50	(50)	(50)	60
450	0	20	(30)	0	30	(40)	20	40	(50)
550	0	0	0	0	0	0	0	0	20

Circled numbers are the approximate amounts of crop removal.

## EXPLANATION OF TM 6

## Estimating Potassium Recommendations from Table

To estimate the amount of potassium needed, the following assumptions will be used - yield goal 150 bushels per acre, soil test vaiue of 200 pounds $K$ per acre and a CEC of 15 . The table shows that the yield goal falls under the 150 bushels per acre column, the soil test value of 200 pounds $K$ per acre is halfway between 150 and 250 in the pounds K per acre column, and the CEC of 15 is halfway between the 10 and 20 CEC columns. The values in the table are as follows:

	$150 \mathrm{bu} / \mathrm{A}$		
	C.E.C.		
Ib K/A	10	20	30
150	90	110	
250	50	70	

After calculating for a CEC of 15 , this segment of the table would be as follows:

$\mathrm{lb} \mathrm{K} / \mathrm{A}$	C.E.C.   15
150	100
250	60

Then to determine the annual recommendation of $\mathrm{K}_{2} \mathrm{O}$ per acre for a 200 -pound K per acre sinitest value, simply find the midpoint between 100 and 60 or 80 pounds $\mathrm{K}_{2} \mathrm{O}$ per acre.

## BUILDINGS AND EQUIPMENT COST FOR A FARM OPERATION

(for a production cycle or one year)


## EQUIPMENT COST

1985 Machinery Cost - new prices
Your ..... Cost
Tractor 100 h.p. - pull 5-16" \$42,000.00
Tractor 70 h.p. - pull 4-16" 28,000.00Plow 5-16"
Plow 4-16"5,500.00
4,500.00
Conservatill Chisel Plow 13'5,900.00Chisel Plow2,700.00
Cultimulcher 12'4,500.00Field Cultivator ${ }^{18}$3,000.00
Corn Planters per row ..... 2,500.00
6 Row Cultivator ..... 2,500.00
Disc Harrow 17' Disc Harrow 17
3,600.00 ..... 3,600.00
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$Combines - 4 row corn head and
13' grain table
60,000.00

## CUSTOM HIRE RATES

1985 Custom Hire Rates - includes equipment,
fuel, repairs, and one persor, $\sigma_{\mathrm{I}}$ the equipment

| Plow | $\$ 11.00 / \mathrm{A}$ |
| :--- | ---: | :--- |
| Chisel | $9.50 / \mathrm{A}$ |
| Disc | $6.00 / \mathrm{A}$ |
| Planting . 'onventional | $7.50 / \mathrm{A}$ |
| Planting - no-till | $12.00 / \mathrm{A}$ |
| Grain Drill | $6.00 / \mathrm{A}$ |
| Combine | $20.00 / \mathrm{A}$ |
| Mowing and Conditioning | $7.00 / \mathrm{A}$ |
| Rake | $4.00 / \mathrm{A}$ |
| Baling - square bale | $0.30 / \mathrm{bale}$ |
| Baling - large round | $6.00 / \mathrm{bale}$ |

## ACRE-HOURS FOR TILLAGE IMPLEMENTS AND OTHER EQUIPMENT

Implement	Size	A/Hrs.	Hrs./A
Moldboard Plow	$3-14^{\prime \prime}$	1.53	0.67
	$4-16^{\prime \prime}$	2.33	0.43
	$5-16^{\prime \prime}$	2.91	0.34
Chisel Plow	$6-16^{\prime \prime}$	3.50	0.29
	10 ft.	4.36	0.23
	12 ft.	5.24	0.19
	15 ft.	6.55	0.15
Disc Harrow	17 ft.	7.42	0.14
	12 ft.	5.24	0.19
	16 ft.	6.98	0.14
Spring-tooth Harrow	20 ft.	8.73	0.12
	$24 \mathrm{ft}$.	10.47	0.10
	12 ft.	5.24	0.19
	15 ft.	6.55	0.15
Field Cultivator	18 ft.	7.86	0.13
	$12^{1 / 2} \mathrm{ft}$.	5.46	0.18
	$151 / 2 \mathrm{ft}$.	6.76	0.15
	18 ft.	7.86	0.13
	24 ft.	10.47	0.10

Formula used to determine the above figures:


Assu iptions used for arriving at figures above:
Tillage - 4.5 m.p.h., $80 \%$ field efficiency
Spraying and cultivation -4.0 m.p.h., $75 \%$ field efficiency
Harvesting - 3.0 m.p.h., $70 \%$ field efficiency
Planting - 4.5 m.p.h., $70 \%$ field efficiency

## ACRE-HOURS FOR TILLAGE IMPLEMENTS AND OTHER EQUIPMENT

> (continued)

Implement	Size	A .trs.	Hrs./A
Spike-tooth Harrow	12 ft .	5.24	0.19
	18 ft .	7.86	0.13
	24 ft .	10.47	0.10
Cultipackers	12 ft .	5.24	0.19
	15 ft .	6.55	0.15
Rotary Hoes	4 row	6.79	0.15
	6 row	10.18	0.10
	8 row	13.58	0.07
Sprayers	8 row	7.27	0.14
Planters	4 row con.	3.70	0.27
	$\begin{aligned} & 4 \text { row } \\ & \text { N-T } \end{aligned}$	3.70	0.27
	$\begin{aligned} & 6 \text { row } \\ & \text { N T } \end{aligned}$	5.56	0.18
	$\begin{gathered} 8 \text { row } \\ \mathrm{N}-\mathrm{T} \end{gathered}$	7.14	0.14
Combines @ 3 m.p.h.	4-30's	2.60	0.39
	6-30's	3.90	0.26
	8-30's	5.00	0.20

Formula used to determine the above figures:

$$
\text { A/Hrs. }=\frac{\text { Speed (m.p.h.) } \times \text { Wia'h (ft.) } \times \text { Field Efficiency (\%) }}{325}
$$

Assumptions used for arriving at figures above:
Tillage - 4.5 m.p.h., $80 \%$ field efficiency
Spraying and cultivation - 4.0 m.p.h., $75 \%$ field efficiency
Harvesting - 3.0 m.p.h., $70 \%$ field efficiency
Planting-4.5 m.p.h., $70 \%$ field efficiency

## COST OF FARM SUPPLIES

1985 Cost	Your   Cost

Herbicides
2,4-D Amine
Aquazine
Attrex 4L
Attrex 80W
Banvel
Basagran
Bladex 4L
Bladex 80W
Blazer
Dual 8E
Fusilade
Lasso
Lorox 50W
Lorox 4L
Paraquat CL
Princep 80W
Prowl
Roundup
Sencor 4L
Sencor 50W
Tordon 10K
Stickers
Crop Oil
Poast
Eradicane
s ed
Oats
Beans
Corn
Alfalfa
Red Clover
Wheat
5.50 bu.
12.00 bu. 68.00/

80,000 kernels
80.00 bu
60.00 bu.
7.50 bu.

## COST OF FARM SUPPLIES (continued)

## Spreading

Dry Fertilizer
Water and Herbicide
Spreader
Insecticides
Dyfonate 20G
Furadan 15G
Lorsban 15G
Sevin 50W

## Dry Fertilizers

15-15-15
6-24-24
P 0-44-0
K 0-0-60
N 46-0-0
Lime
Liquid Fertilizers
Liquid N, 28\%
6-18-6
4-10-10

## Your Cost <br> 1985 Cost

\$3.00/A they do it 4.00/A they do it 2.50/A you do it
$\qquad$
2.20 lb.
1.70 lb .
1.50 lb.
2.10 lb .
170.00 ton
168.00 ton

25థ/lb. 120.00 ton $11.5 \Phi / \mathrm{lb}$. 220.00 ton 24థ/lb. 7.00 ton
145.00 ton 26¢/lb. 150.00 ton 125.00 ton

## MARKETING DATA

	Prices May 1986	Price Changes	New Crop Sept., Oct., Nov., Dec., 1986	Price Changes
GRAINS				
Corn	\$2.10/bu		\$1.90/bu	
Soybeans	$5.30 / \mathrm{bu}$		4.95/bu	
Wheat	$3.70 / \mathrm{bu}$		$3.20 / \mathrm{bu}$	
Oats	$1.10 / \mathrm{bu}$			———
Hay	60.00/ton		---	--
LIVESTOCK AND POULTRY				
Steers	-j0¢/lb			
Barrows and Gilts	52¢/lb			
Lambs	744/lb			
Broilers	42¢/Ib			
Eggs (large				
Turkeys	49\$/lb			
Milk	\$11.90/cwt			


[^0]:    ${ }^{1}$ Rating code: $E=$ Excellent, $G=$ Good, $F-$ Fair, $P=$ Poor .
    ${ }^{2}$ Lasso or Dual should not be incorporated deeper than 2 inches.

[^1]:    Controls most annual grasses and pigweed. Use the higher rates of Lasso or Dual to control yellow nutsedge and eastern black nightshade. Prowl will control seedling johnsongrass and lambsquarter, but will not control nutsedge or nightshade. See the herbicide labels for use rates on appropriate soils and weeds. May be applied on dry bulk fertilizer. Incorporate only 1 to 2 inches deep. To improve broadleaf weed control. Sencor/Lexone ( $1 / 4$ to $1 / 2 \mathrm{lb}$ active/A), or Lorox/Linex ( $\frac{1}{2}$ to 1 lb active/A), or Amiben ( 1.8 to 2.7 lb active/A) may be applied as a preemergence overlay.

[^2]:    Source: Ohio Agronomy Guide, pp. 41-42, 62, 64-66

[^3]:    C~ırce: Ohio Agronomy Guide, p 67

[^4]:    'These seeding rate recommendations assume the use of good quality seed with high percent germination, and adequate seedbed preparation in the case of conventional seedings or adequate seed-soll contact in the case of no-illage seedings)

[^5]:    Source: Livestock Nutrition and Feeding, pp 127-128

[^6]:    Sllage can replace half the hay. However, three times as much silage must be fed to replace the

[^7]:    *This list of machinery and equipment is provided as a guide for students to use in preparing budgets. You may want to cut the prices $50-60 \%$ for used equipment.

[^8]:    Circled numbers are the approxımate amounts of crop removal.

